Rambler's Top100Astronet    
  по текстам   по ключевым словам   в глоссарии   по сайтам   перевод   по каталогу
 
На сайте
Астрометрия
Астрономические инструменты
Астрономическое образование
Астрофизика
История астрономии
Космонавтика, исследование космоса
Любительская астрономия
Планеты и Солнечная система
Солнце

Радиоастрономия

1. Введение
2. Условия радиоастрономических исследований
3. Что наблюдают и изучают радиоастрономы
4. Основные этапы развития и достижения радиоастрономии
5. Заключение

1. Введение

Р. - раздел астрофизики, изучающий различные космические объекты методом исследования их эл.-магн. излучения в диапазоне радиоволн (от миллиметровых до километровых). Объектами изучения явл. практически все космич. тела и их комплексы (от тел Солнечной системы до Метагалактики), а также вещество и поля, заполняющие космич. пространство (межпланетная среда, межзвездный газ, межзвездная пыль и магн. поля, космические лучи, реликтовое излучение и т.п.). Метод исследования - регистрация космич. радиоизлучения с помощью <радиотелескопов>.

Р. зародилась в начале 30-х гг. 20 в., когда амер. радиоинженер К. Янский изучал помехи радиотелефонной связи. Для этой цели он сконструировал направленную антенну и использовал довольно высокочувствительный по тем временам приемник. Наряду с помехами земного, атмосферного происхождения (грозовые разряды, ионосферные шумы и др.) Янский заметил вариации мощности радиошума, коррелировавшие с периодом вращения Земли, и вскоре надежно установил космическое происхождение источника этих сигналов.

До 2-й мировой войны космич. радиоизлучение не интересовало астрономов. Новый метод исследования космоса требовал новых, необычных инструментов наблюдения и новых, владеющих этим методов исследователей.

Во время 2-й мировой войны ускорилось развитие радиофизики и радиотехники. Антенны и высокочувствительные приемники созданных в это время радарных систем дали мощный толчок развитию радиоастрономич. исследований. С 1950-х гг. началось бурное развитие Р.

2. Условия радиоастрономических исследований

Радиоволны, распространяющиеся в космич. пространстве, могут быть зарегистрированы наземными приемниками в диапазоне частот от $\nu\sim 30$ ГГц ($\lambda\sim 1$ см; см. Прозрачность земной атмосферы). Радиоволны с $\lambda > 30$ м не проходят (поглощаются или отражаются) через ионосферу Земли (см. Верхняя атмосфера). Наблюдения в этом диапазоне могут проводится радиотелескопами, вынесенными за пределы атмосферы. Радиоволны с $\lambda < 1$ см поглощаются молекулами атмосферных газов. Однако эта граница атмосферного "радиоокна" не резкая. Она представляет собой ряд интервалов прозрачности и полупрозрачности между полосами поглощения молекул, что позволяет проводить наблюдения на некоторых волнах миллиметрового диапазона, в частности вблизи длин волн 8, 4 и 2,6 мм.

Радиоастрономич. наблюдения, в отличие от оптических, можно проводить и в облачную погоду, т.к. атмосферные условия слабо влияют на прохождение радиоволн (кроме коротковолнового сантиметрового и миллиметрового диапазонов) .

Радиоастрономич. обсерватории оснащены большими радиотелескопами, основой которых явл. специально сконструированные и построенные антенны или комплексы антенн. Они снабжены набором высокочувствит. приемных устройств - радиометров , а также спец. многоканальными приемниками излучения для целей радиоспектроскопии в различных радиолиниях, устройствами для исследования линейной и круговой поляризации радиоволн. В радиоастроонмич. эксперименте широко применяются ЭВМ, облегчающие процесс регистрации принимаемого радиоизлучения и, главное, обработки данных наблюдений. Отдельно взятый радиотелескоп не может "перекрыть" весь диапазон радиоволнЮ в к-ром ведутся радиоастрономич. исследования. В длинноволновой области (декаметровые, метровые волны) применяются, как правило, сложные антенны, "набранные" из многих десятков и сотен элементов (напр., диполей). В дециметровом и сантиметровом диапазонах длин волн с успехом используются большие полу- и полноповоротные параболич. антенны. Антенны этого типа применяются и в миллиметровом диапазоне, но требованияк точности изготовления зеркал здесь выше.

Т.о., исследование космич. радиоизлучения во всем диапазоне явл. задачей, решение к-той возможно лишь с использованием многих радиотелескопов различных обсерваторий мира. Это требует координации и кооперации работы радиоастрономов многих стран, эффективного обмена научной информацией, т.е. тесного международного сотрудничества.

3. Что наблюдают и изучают радиоастрономы

Если бы "радионебо" можно было видеть так же, как мы видим в ясную ночь звездное небо, нам представилась бы картина, существенно отличающаяся от той, к-рая наблюдается в световых лучах. Мы увидели бы более широкую (в 2-3 раза) яркую полосу вдоль Млечного Пути со значит. увеличением яркости в галактическом центре (в оптич. излучении центр ненаблюдаем из-за сильного поглощения света межзвездной пылью). Все небо было бы усеяно "радиозвездами" и протяженными туманностями различной яркости. При сопоставлении вида неба в световых и радиолучах мы обратили бы внимание на странное, на первый взгляд, несоответствие: на месте многих оптически ярких звезд не было бы видно даже слабых "радиозвезд", в то время как нек-рые оптически слабые объекты, невидимые невооруженным глазом, в радиолучах были бы очень яркими. При помощи сильного оптич. телескопа на месте нек-рых ярких "радиозвезд" мы увидели бы далекие туманности и слабые звездобразные объекты - галактики и квазары. Самым ярким объектом "радионеба" остается Солнце (из-за близости к нам). Однако мощность его радиоизлучения в миллионы раз меньше оптического. Это сравнение показывает, насколько слабо, вообще говоря, радиоизлучение космоса и почему его интенсивное исследование стало возможным лишь после создания гигантских высокочувствит. радиотелескопов. Вторым по потоку радиоизлучения источником явл. галактич. туманность в созвездии Кассиопеи (радиоисточник Кассиопея А) - остаток вспышки сверхновой звезды. Но уже следующим по наблюдаемому потоку излучения объектом явл. радиоисточник в созвездии Лебедя, отождествляемый с далекой (расстояние ок. 200 Мпк) слабой (16-й звездной величины) туманностью (радиогалактика Лебедь А). Абсолютное большинство наиболее мощных радиоисточников на "радионебе" - внегалактич. объекты (радиогалактики и квазары).

Непрерывное радиоизлучение явл. излучением больших ансамблей заряженных частиц (прежде всего электронов). Быстро и хаотически меняющийся во времени "радиошум" "размазан" по широкому интервалу радиочастот, т.е. имеет непрерывный частотный спектр. Одна из задач радиоастрономич. исследований - определение спектр. распределения потока энергии, приносимого радиоволнами от космич. объектов. Спектр. состав радиоизлучения - важная характеристика механизма излучения. Осн. механизмами непрерывного радиоизлучения явл. тормозное излучение, магнитотормозное излучение и (в т.ч. синхротронное излучение). Осн. механизм радиоизлучения в линиях связан с переходами между уровнями энергии атомов и молекул.

Регистрируемое на некоторой частоте $\nu$ радиоизлучение космич. объекта выражают в т.н. ед. спектральной плотности потока $F_\nu$ [Вт/(м2 Гц)] (см. Янский).

Рис. 1. Образец записи космического
радиоисточника (квазар 3С 48) на волне 32 см.
$\Delta T_a\approx 5$ К. Справа на записи калибровочная
"ступенька" от шумового генератора.
На простом примере измерения $F_\nu$ проиллюстрируем , как проводятся радионаблюдения. Радиотелескоп наводится на точку небесной сферы, в к-рой расположен или через к-рую вследствие ее суточного вращения должен пройти исследуемый радиоисточник. Самопишущий регистратор приемника (напр., вольтметр) записывает кривую изменения антенной температуры $\Delta T_a$ . Чтобы получить из записи $\Delta T_a$ поток $F_\nu$ , необходимо выразить $\Delta T_a$ в К, т.е. прокалибровать приращение антенной темп-ры. Тогда поток от источника определяется по формуле $F_\nu =2k \Delta T_a/A_э$ , где Aэ - известная эффективная площадь антенны радиотелескопа. Для калибровки используют либо запись радиоисточника с уже хорошо известным потоком $F_\nu$, либо подключение ко входу радиометра согласованных нагрузок (сопротивлений с известной темп-рой, а следовательно, мощностью "радиошума"). На рис. 1 приведен пример записи прохождения радиоисточника через диаграмму направленности неподвижной антенны. На записи видна флуктуационная (шумовая) дорожка, характеризующая минимальную чувствительность радиотелескопа, а также калибровочная "ступенька" от генератора шума.

Радиотелескоп, работающий на нек-рой частоте $\nu$, представляет собой "монохроматический" инструмент, регистрирующий излучение в полосе $\Delta \nu$, и, следовательно, дает лишь одну "точку" на спектре источника. Построение и исследование непрерывных спектров радиоизлучения требует измерений $F_\nu$ на многих частотах. На рис. 2 приведены построенные по отдельным "точкам" спектры синхротронного излучения ряда радиоисточников широко известного третьего Кембриджского каталога (3C).

Рис. 2. Примеры непрерывных спектров
радиоизлучения некоторых радиоисточников
каталога 3С (3С 295 - радиогалактика,
остальные объекты - квазары). Указаны
значения спектральных индексов $\alpha$.
В квазаре 3С 345 коротковолновая
часть спектра (пунктир) переменна.
Другой, более сложной, задачей Р. явл. исследование структуры радиоисточников. Если ширина диаграммы направленности радиотелескопа больше угловых размеров источника, она решается с помощью сложных многоантенных радиоинтерферометров. Разрешение деталей структуры размером от секунды до неск. десятков секунд дуги осуществляется системами апертурного синтеза (см. Апертурного синтеза метод). Напр., система VLA (США) позволяет получать на длинах волн сантиметрового диапазона радиоизображения с разрешением до 0,6"-1,0", что соответствует разрешающей способности самых больших наземных оптич. телескопов. В тысячу раз более высокое разрешение структуры источников радиоизлучения (до десятых долей миллисекунды дуги) достигается методом радиоинтерферометрии со сверхдлинными базами. Этим методом изучаются компактные образования в ядрах галактик и квазаров, источники мазерного излучения в линиях молекулы H2O ($\lambda=1,35$ см). На рис. 3 приведены радиоизображение (линии равной интенсивности излучения - радиоизофоты) галактики 3C 111 (видны характерная для многихвнегалактических объектов двойная структура и неразрешенный на этой волне радиоисточник в центре галактики) и радиоизображение центрального радиоисточника, полученные, соответственно, методом апертурного синтеза и методом интерферометрии со сверхдлинной базой.

Помимо спектров излучения и структуры радиоисточников исследуются также поляризация излучения, распределение поляризов. излучения по видимой структуре источников (рис. 4). Это позволяет получать данные о структуре магн. полей, а также (на основе Фарадея эффекта) о св-вах среды (напр., о плотности плазмы как в области формирования излучения, так и на пути его распространения).

Рис. 3. Структура источника излучения в
радиогалактике 3С 111 (на волне 21 см) и ее
центрального компонента (вверху), наблюдаемого
на волне 2,8 см. В левом нижнем углу - размеры
диаграммы направленности интерферометра
на волне 21 см.
Радиоизлучение многих космич. объектов переменно с различными характерными временами. Разнообразны, напр., явления переменности радиоизлучения активного Солнца, Юпитера, пульсаров. Наконец, обнаружена и всесторонне изучается переменность радиоизлучения на сантиметровых и дециметровых длинах волн многих внегалактических объектов (радиогалактик и квазаров).

Важным направлением Р. явл. радиоспектроскопия - исследование излучения космич. объектов в различных радиолиниях, таких, как радиолиния 21 см нейтрального водорода, влиниях возбужденного водорода, в линиях OH ($\lambda=18$ см), воды H2O ($\lambda=1,35$ см) и многих др. молекул.

4. Основные этапы развития и достижения радиоастрономии

В 1945-46 гг. были проведены первые успешные эксперименты по радиолокации Луны. В последующие годы этот активный метод исследования тел Солнечной системы позволил с высокой точностью определять расстояния и, в частности, уточнить астрономическую единицу длины, а также детально изучить строение твердых поверхностей ряда планет (см. Радиолокационная астрономия).

В 1951 г. сразу тремя группами радиоастрономов в Нидерландах, США и Австралии была открыта предсказанная в 1944 г. голл. астрономом ван де Хюлстом радиолиния водорода 21 см (возможность ее обнаружения в излучении Галактики существовавшими в то время средствами была показана И.С. Шкловским в 1948 г.). Холодные области межзвездной среды, где практически все атомы водорода (подчеркнем, что это осн. элемент в космич. пространстве) находятся в нейтральном состоянии, нельзя наблюдать никакими др. методами. Поэтому линия 21 см - важнейший инструмент исследования межзвездного водорода, позволяющий получать важные сведения о его массе, характере распределения и кинематике как в нашей Галактике, так и во многих др. близких галактиках.

В 50-е гг. 20 в. интенсивно изучалось радиоизлучение Солнца и были открыты его осн. особенности. Изучалось радиоизлучение планет. Исследование радиоизлучения Луны на различных длинах волн позволило, в частности, установить, что ее поверхность покрыта значит. слоем пыли; было обнаружено, что поверхность Венеры имеет высокую ($\approx 600$ К) темп-ру; и