 LaTeX2gif
LaTeX2gif
27.01.2005 20:32 | Astronet
Na nashem saite poyavilos' prilozhenie LaTeX2gif, pozvolyayushee sozdavat' izobrazheniya formul, nabrannyh v notacii LaTeX. Formuly sozdayutsya v gif-formate.
[Citirovat'][Otvetit'][Novoe soobshenie]
| Forumy >> Obsuzhdenie publikacii Astroneta | 
| Spisok  /  Derevo Zagolovki / Annotacii / Tekst | 
- >> LaTeX2gif
 
(Astronet,
27.01.2005 20:32, 619 Bait, otvetov: 7)
Na nashem saite poyavilos' prilozhenie LaTeX2gif,        
pozvolyayushee sozdavat' izobrazheniya formul, nabrannyh v notacii LaTeX. Formuly sozdayutsya        
v gif-formate. V izobrazheniya, sozdavaemye s pomosh'yu etogo prilozheniya, mozhno vklyuchat'      
ne tol'ko formuly, no i fragmenty tekstov.     
     
O tom kak pisat' formuly, vy smozhete prochest' v etoi instrukcii. 
- tex2html ( Gost', 5.01.2006 23:16, 126 Bait) Eshe est' takaya programma Tex2html http://www.math.temple.edu/computing/l2h_manual/ Vrode by ona dazhe bez gifov obhoditsya.
- Re: LaTeX2gif (E. A. Shevchenko, 16.01.2009 20:57, 134 Bait) Ya by porekomendoval ispol'zovat' jsMath. Ne nuzhno sozdavat' otdel'no kartinok iz formul, prosto ispol'zuetsya sintaksis LaTeX-a v html.
- Re: LaTeX2gif
 
(A. V. Rykov,
17.01.2009 13:27, 148 Bait)
$F=G\frac{m_1m_2}{R^2}=\xi (4\pi R)^2\sigma _{12}\sigma _{21}$ Pomestit' risunok *.gif ne udalos', ne pomeshaet vzyatuyu kopiyu iz laTex, a 
- Re: LaTeX2gif
 
(A. V. Rykov,
22.01.2009 14:00, 269 Bait)
Est' predlozhenie po napisaniyu formul (ochen' udobnoe cherez LaTex ) - kak pisat' formuly cherez MathPlaer est' instrukciya = http://www.scientific.ru/dforum/common/1119303836 Uspehov! 
- Re: LaTeX2gif
 
(A. V. Rykov,
24.02.2009 11:46, 279 Bait, otvetov: 2)
Gravitaciya - formula N'yutona v vakuume $F=G\frac{m_1m_2}{R^2}=\xi (4\pi R)^2\sigma _{12}\sigma _{21}$ Polyarizaciya vakuuma ot massy - $\sigma =\sqrt{\frac G\xi }\frac m{4\pi R^2}$ Uskorenie - $g=4\pi \sqrt{\xi G}\sigma $ 
- Re[2]: LaTeX2gif
 
(A. V. Rykov,
24.02.2009 16:54, 310 Bait, otvetov: 1)
Gravitaciya - formula N'yutona v vakuume $F=G\frac{m_1m_2}{R^2}=\xi (4\pi R)^2\sigma _{12}\sigma _{21}$ Polyarizaciya vakuuma ot massy - $\sigma =\sqrt{\frac G\xi }\frac m{4\pi R^2}$ Uskorenie - $g=4\pi \sqrt{\xi G}\sigma $ 
- Re[3]: LaTeX2gif
 
(A. V. Rykov,
24.02.2009 16:57, 504 Bait)
< tbody> Citata: Gravitaciya - formula N'yuto na v vakuume $F=G\frac{m_1m_2}{R^2}=\xi (4\pi R)^2\sigma _{12}\sigma _{21}$ Polyariz aciya vakuuma ot massy - $\sig ma =\sqrt{\frac G\xi }\frac m{4\pi R^2}$ Uskorenie - $g=4\pi \sqrt{\xi G}\sig ma $ 
