args[0]=message
args[1]=DB::DB::Message=HASH(0x432dc00)
tex2html
5.01.2006 23:16 | Gost'
Eshe est' takaya programma Tex2html http://www.math.temple.edu/computing/l2h_manual/ Vrode by ona dazhe bez gifov obhoditsya.
[Citirovat'][Otvetit'][Novoe soobshenie]
Forumy >> Obsuzhdenie publikacii Astroneta |
Spisok / Derevo Zagolovki / Annotacii / Tekst |
- LaTeX2gif
(Astronet,
27.01.2005 20:32, 619 Bait, otvetov: 7)
Na nashem saite poyavilos' prilozhenie LaTeX2gif,
pozvolyayushee sozdavat' izobrazheniya formul, nabrannyh v notacii LaTeX. Formuly sozdayutsya
v gif-formate. V izobrazheniya, sozdavaemye s pomosh'yu etogo prilozheniya, mozhno vklyuchat'
ne tol'ko formuly, no i fragmenty tekstov.
O tom kak pisat' formuly, vy smozhete prochest' v etoi instrukcii.
- >> tex2html ( Gost', 5.01.2006 23:16, 126 Bait) Eshe est' takaya programma Tex2html http://www.math.temple.edu/computing/l2h_manual/ Vrode by ona dazhe bez gifov obhoditsya.
- Re: LaTeX2gif (E. A. Shevchenko, 16.01.2009 20:57, 134 Bait) Ya by porekomendoval ispol'zovat' jsMath. Ne nuzhno sozdavat' otdel'no kartinok iz formul, prosto ispol'zuetsya sintaksis LaTeX-a v html.
- Re: LaTeX2gif
(A. V. Rykov,
17.01.2009 13:27, 148 Bait)
$F=G\frac{m_1m_2}{R^2}=\xi (4\pi R)^2\sigma _{12}\sigma _{21}$
Pomestit' risunok *.gif ne udalos', ne pomeshaet vzyatuyu kopiyu iz laTex, a
- Re: LaTeX2gif
(A. V. Rykov,
22.01.2009 14:00, 269 Bait)
Est' predlozhenie po napisaniyu formul (ochen' udobnoe cherez LaTex ) -
kak pisat' formuly cherez MathPlaer est' instrukciya =
http://www.scientific.ru/dforum/common/1119303836
Uspehov!
- Re: LaTeX2gif
(A. V. Rykov,
24.02.2009 11:46, 279 Bait, otvetov: 2)
Gravitaciya - formula N'yutona v vakuume
$F=G\frac{m_1m_2}{R^2}=\xi (4\pi R)^2\sigma _{12}\sigma _{21}$
Polyarizaciya vakuuma ot massy -
$\sigma =\sqrt{\frac G\xi }\frac m{4\pi R^2}$
Uskorenie -
$g=4\pi \sqrt{\xi G}\sigma $
- Re[2]: LaTeX2gif
(A. V. Rykov,
24.02.2009 16:54, 310 Bait, otvetov: 1)
Gravitaciya - formula N'yutona v vakuume
$F=G\frac{m_1m_2}{R^2}=\xi (4\pi R)^2\sigma _{12}\sigma _{21}$
Polyarizaciya vakuuma ot massy -
$\sigma =\sqrt{\frac G\xi }\frac m{4\pi R^2}$
Uskorenie -
$g=4\pi \sqrt{\xi G}\sigma $
- Re[3]: LaTeX2gif
(A. V. Rykov,
24.02.2009 16:57, 504 Bait)
< tbody>
Citata: Gravitaciya - formula N'yuto na v vakuume
$F=G\frac{m_1m_2}{R^2}=\xi (4\pi R)^2\sigma _{12}\sigma _{21}$
Polyariz aciya vakuuma ot massy -
$\sig ma =\sqrt{\frac G\xi }\frac m{4\pi R^2}$
Uskorenie -
$g=4\pi \sqrt{\xi G}\sig ma $