Rambler's Top100Astronet    
  po tekstam   po forumu  vnutri temy
 

PROSTRANSTVO KAK IDEAL'NAYa KVANTOVAYa ZhIDKOST'

Spisok  /  Derevo
Forumy >> Astronomiya i Internet
Avtor Soobshenie
V. M. Usachev
PROSTRANSTVO KAK IDEAL'NAYa KVANTOVAYa ZhIDKOST' 4.02.2008 11:04

AKSIOMATIZACIYa I NAChALA TEORII PROSTRANSTVA KAK IDEAL'NO' KVANTOVO' ZhIDKOSTI

A. OPREDELENIYa.

1. AKSIOMATIZACIYa eto osoznanie polnoi adekvatnosti predstavlenii ob izuchaemyh faktah i yavleniyah ob'ektivnoi real'nosti.

2. NAChALA TEORII eto osnovopolagayushie idei, nauchnye gipotezy i pervichnye matematicheskie dokazatel'stva ih sootvetstviya dostoverno ustanovlennym fundamental'nym nauchnym teoriyam i faktam.

3. IDEAL'NAYa KVANTOVAYa ZhIDKOST' eto zhidkost', v kotoroi, pri stremleniyu k nulyu absolyutnoi temperatury:
a) velichina POSLEDNE' polnost'yu opredelyaetsya ee udel'noi plotnost'yu energii kvazichastic (to est', postupatel'no i vrashatel'no dvizhushihsya v nei ee sobstvennyh lokalizovannyh garmonicheskih kolebanii);
b) vnutrennee trenie (vyazkost') stremitsya k nulyu;
v) polnost'yu otsutstvuet brounovskoe dvizhenie;
g) fizicheskie svoistva ne menyayutsya v MINIMAL'NO' ChASTI vsego ob'ema pri stremlenii TAKOVO' k nulyu.

B. OSNOVOPOLAGAYuShIE IDEI.

Klassicheskaya molekulyarno kineticheskaya teoriya, voznikshaya iz atomisticheskih gipotez filosofov i uchenyh drevnego mira, srednevekovoi nauki i Matematicheskih nachal natural'noi filosofii N'yutona, ne smogla ob'yasnit' ni odnogo iz fundamental'nyh fizicheskih vzaimodeistvii otkrytyh v novoi i noveishei istorii nauki.

Prichiny vozniknoveniya sil gravitacii i inercii, elektromagnitnyh i slabyh, a tak zhe sil'nyh vzaimodeistvii (silovyh polei) ostavalis' sovershenno ne ponyatymi fizicheskoi naukoi vplot' do poslednei treti proshlogo veka.

Do nachala XX veka takaya situaciya poluchilas' potomu, chto prostranstvo, v kotorom sushestvuet mir vzaimodeistvuyushih fizicheskih tel predstavlyalos' mezhdu etimi telami absolyutno pustym. Pri etom nevozmozhno bylo vydvinut' nikakoi neprotivorechivoi gipotezy vzaimodeistviya tel drug s drugom na rasstoyanii.

V dvadcatom veke dominirovalo relyativistskoe predstavlenie o prostranstve kak NEPRERYVNOM prodolzhenii kazhdoi material'noi chasticy. Sovokupnost' etih prodolzhenii vo vselennoi traktovalas' kak edinyi nepreryvnyi prostranstvenno vremennoi kontinuum. Relyativistskaya paradigma polnost'yu protivorechila ob'ektivno real'noi kvantovo mehanicheskoi DISKRETNO' sushnosti mikromira.

K seredine 60-yh godov proshlogo veka evristicheskii krizis v teoreticheskoi fizike stal nastol'ko ocheviden, chto ne bylo ni odnogo vydayushegosya uchenogo s mirovym imenem, kotoryi by ne priznaval etogo fakta.

Osen'yu 1967 goda avtorom byl predlozhen ryad gipotez o fizicheskoi sushnosti prostranstva, fundamental'nyh elementarnyh chastic i fizicheskih vzaimodeistvii, kotorye pozvolyali polnost'yu preodolet' voznikshii krizis v teoreticheskoi fizike.

1. Fundamental'nye elementarnye chasticy (elektrony, protony i neitrony) mozhno (v pervom priblizhenii) legko voobrazit' razlichnymi agregatnymi sostoyaniyami ideal'noi kvantovoi zhidkosti (IKZh) prostranstva, lokalizuemymi v nei ee zhe poverhnostyami: elektron kak puzyrek para v zhidkosti prostranstva; proton kak mnogosloinyi sharik zhidkokristallicheskogo l'da v nei; neitron kak vspenennuyu smes' elektrona i protona, kotoraya, osedaya za chetvert' chasa, snova raspadaetsya na elektron i proton. (Pozitron vpisyvaetsya v etot ryad predstavlenii kak puzyrek kavitacii v IKZh prostranstva.)

2. Iz takih predstavlenii elektrostaticheskoe ottalkivanie i prityazhenie mezhdu elektronami i protonami legko ob'yasnyaetsya klassicheskoi termodinamikoi (tak kak elektrony teplee zhidkosti prostranstva, a protony holodnei ee, to odnoimennye chasticy stremyatsya rassredotochit'sya, a raznoimennye sblizit'sya dlya vyravnivaniya temperatury v fizicheskoi sisteme zhidkost' - chasticy soglasno vtoromu zakonu termodinamiki o vozrastaniya entropii).
Deistvitel'no, po teorii kvantovyh zhidkostei (L.D. Landau) kvanty energii (kvazichasticy) voznikayut ili ischezayut v nei s vozrastaniem ili umen'sheniem temperatury zhidkosti. Znachit v IKZh prostranstva vokrug goryachego puzyr'ka para - elektrona obrazuetsya oblako povyshennoi koncentracii kvazichastic, a vokrug holodnyh protona i pozitrona obrazuyutsya oblaka ponizhennoi koncentracii kvazichastic. Eti oblaka i mogut rassmatrivat'sya nami kak fizicheskaya sushnost' elektricheskih polei vokrug zaryazhennyh chastic s odinakovymi ili protivopolozhnymi znakami.)

3. Iz etih zhe predstavlenii sleduet, chto lokalizaciya fundamental'nyh elementarnyh chastic poverhnost'yu zhidkosti prostranstva proishodit posredstvom sil ee poverhnostnogo natyazheniya.

4. Poetomu vse svobodnye elektrony, protony i pozitrony vo Vselennoi, imeya odinakovuyu absolyutnuyu velichinu e elektricheskih zaryadov, dolzhny imet' odinakovye diametry d, tak kak oni mogut ostavat'sya stabil'nymi tol'ko pri uslovii ravnovesiya sil poverhnostnogo natyazheniya zhidkosti prostranstva, szhimayushih eti chasticy snaruzhi, i vnutrennego davleniya ekvivalentnogo kulonovskim silam, stremyashimsya razorvat' ih iznutri.

5. Poetomu massa zhidkokristallicheskogo protona, estestvenno, na tri poryadka bol'she massy elektrona-puzyr'ka para, podobno razlichiyu plotnostei molekulyarnyh zhidkostei i gazov.

6. Buduchi puzyr'kom para v zhidkosti prostranstva elektron elastichen i uprugo deformiruetsya pri stolknoveniyah tem bol'she, chem vyshe energiya stalkivayushihsya s nim chastic i zhestkih kvantov, poetomu ego diametr ne udaetsya izmerit' eksperimental'no.

7. Ishodya iz etih osnovopolagayushih idei, avtoru udalos' (vpervye v sentyabre 1967 goda) sostavit' universal'nuyu formulu (sistemu uravnenii), vyrazhayushuyu fundamental'nyi zakon sohraneniya i prevrasheniya energii v vide:
...=mc^2_______________________________________(1)
V levoi chasti formuly (1) stoit vyrazhenie energii Planka E=hy dlya fotonov (kvantov elektromagnitnogo izlucheniya), gde h - postoyannaya Planka, y - chastota kvanta. V pravoi chasti etoi formuly nahoditsya vyrazhenie polnoi energii massy E=mc^2 dlya chasticy s inertnoi (gravitiruyushei) massoi m, v kotoruyu mogut prevratit'sya fotony, polnost'yu izrashodovav na eto prevrashenie svoyu energiyu hy. Central'naya chast' us formuly (1) vyrazhaet potencial'nuyu energiyu, absolyutno ravnuyu rabote sil poverhnostnogo natyazheniya zhidkosti prostranstva pri sinteze-annigilyacii chastic i kvantov izlucheniya drug v druga. Zdes' u - koefficient poverhnostnogo natyazheniya zhidkosti prostranstva, s - ploshad' poverhnosti zhidkosti prostranstva, lokalizuyushei kvant izlucheniya ili chasticu i obrazuyushei ee vnutrennyuyu strukturu.

8. Soglasno klassicheskoi elektrostatike polnaya energiya kulonovskih sil elektrona ravna udvoennomu kvadratu velichiny ego zaryada delennomu na diametr elektrona. Poetomu formula (1) pozvolyaet tochno vychislit' velichiny u i d, ishodya iz predstavleniya ob elektrone kak puzyr'ke para (lishennom vnutrennei struktury) v zhidkosti prostranstva, tak kak mozhno sostavit' sistemu dvuh uravnenii s etimi dvumya neizvestnymi:
1) 2e^2 / d = us ;
2) 2e^2 / d = m c^2;
gde e - elektricheskii zaryad elektrona, u - neizvestnyi koefficient poverhnostnogo natyazheniya zhidkosti prostranstva; d - neizvestnyi diametr elektrona; s=3,14d^2 - ploshad' sfericheskoi poverhnosti puzyr'ka-elektrona, m - massa elektrona, c - skorost' sveta.
Podstaviv spravochnye chislennye znacheniya izvestnyh velichin, i reshiv sistemu uravnenii 1) i 2) poluchaem raschetnuyu velichinu diametra svobodnyh fundamental'nyh zaryazhennyh elementarnyh chastic:
d = 0,563 * 10^-12 sm;
i novuyu fundamental'nuyu mirovuyu konstantu
u = 0,823 * 10^18 erg/sm^2= 0,823 * 10^18 din/sm.

PRIMEChANIE Sistema uravnenii (1) ukazyvaet na ekvivalentnost' massy fundamental'nyh chastic ploshadi poverhnosti zhidkosti prostranstva, lokalizuyushei chasticy i obrazuyushei vnutrennyuyu strukturu protonov. Eksperimental'no eto podtverzhdaetsya ekvivalentnost'yu defekta mass energii raspada i sinteza yader, a teoreticheski kapel'no-obolochechnoi model'yu yader atomov.

9. Izlozhennye osnovopolagayushie idei i formula (1) dayut iskomuyu odnoznachnuyu vzaimosvyaz' vseh fundamental'nyh fizicheskih vzaimodeistvii: elektroslabogo -hy, sil'nogo - us, inertnogravitacionnogo mc^2 i snimayut vse paradoksy relyativistskoi i kvantovoi fiziki, polnost'yu ob'yasnyaya poslednie s pozicii klassicheskoi fiziki.

10. Naprimer, preslovutyi korpuskulyarno - volnovoi dualizm kvantovoi fiziki legko ponyat', glyadya na puzyr'ki para, vsplyvayushie so dna sosuda na poverhnost' vody. Oni vsplyvayut ne strogo vertikal'no, a po spiral'no-vintovoi traektorii vokrug vertikal'noi osi. Tochno tak zhe chasticy i kvanty izlucheniya (to est' zhidkokristallicheskie obrazovaniya i puzyr'ki para) dvizhutsya v zhidkosti prostranstva v svobodnom sostoyanii ne po pryamolineinym traektoriyam, a po spiral'no-vintovym (vokrug pryamo- ili krivolineinyh osei vintov).

11. Takim obrazom, dliny voln de Broilya i kvantov izlucheniya sleduet ponimat' kak shagi vitkov vintovyh traektorii dvizheniya chastic i kvantov, a ih chastotu legko ponyat' kak chislo takih vitkov v sekundu.

12. Vintovoe pravoe ili levoe napravlenie vitkov traektorii dvizheniya chastic i fotonov legko ob'yasnyaet poperechnost' elektromagnitnyh voln i dvoinoe prelomlenie sveta (a znachit, spin i ego znak).

13. Ponimanie fizicheskoi sushnosti prostranstva Vselennoi kak zhidkosti pozvolyaet legko ponyat' kachestvennuyu kartinu tenzornoi teorii gravitacii A. Einshteina. Tak, prismotrevshis' k puzyr'kam vozduha na poverhnosti chaya ili kofe v stakane, legko zametit', chto oni uskorenno sblizhayutsya drug s drugom, obrazuya ostrovki peny. Eto proishodit potomu, chto nepreryvno isparyayushiesya s poverhnosti puzyr'ka molekuly zameshayutsya blizhaishimi molekulami iz okruzhayushego puzyrek poverhnostnogo sloya zhidkosti. Takim obrazom, puzyrek nepreryvno natyagivaet na sebya poverhnostnyi sloi zhidkosti, podtyagivaya k sebe drugie puzyr'ki. To zhe samoe proishodit i vnutri zhidkosti prostranstva s elementarnymi chasticami i lyubymi fizicheskimi ob'ektami, tol'ko vmesto molekul tam deistvuyut kvazichasticy (to est' puzyr'ki para - kvanty energii) soglasno formule (1).

14. Predstavlenie o prostranstve kak zhidkosti blizkoi k ideal'noi daet sovershenno inuyu teoriyu nablyudaemogo galakticheskogo krasnogo smesheniya, chem relyativistskaya kosmologiya i pryamolineinyi zakon Habbla (v=Hr), ne vypolnyayushiisya, kak vyyasnilos', dlya dalekih galaktik. Ishodya iz zakonov klassicheskoi fiziki, aksiomatizacii prostranstva kak IKZh i nachal ee teorii, avtorom v fevrale 2005g. vyvedeny (a v noyabre 2007g. otkorrektirovany) sleduyushie formuly zavisimosti chastoty, energii, dliny volny i vremeni zhizni fotonov (kvantov elektromagnitnogo izlucheniya), svobodno dvizhushihsya v kosmicheskom prostranstve:
y=y'- Kt(2T- t) ___________(3)
E=h[y' - Kt(2T-t)]___________(4)
l= c/[y' - Kt(2T-t)]__________(5)
T=(y'/K)^1/2_______________(6)
V etih formulah zdes' i dalee:
t - otrezok vremeni zhizni kvanta (fotona) ot momenta t=0 pri ego izluchenii do momenta ego registracii priemnikom izlucheniya;
y - chastota svobodnogo kvanta (fotona) kak funkciya vremeni t;
E - energiya svobodnogo kvanta kak funkciya vremeni t;
y'- chastota kvanta v moment ego izlucheniya ( t = 0);
K - koefficient (oboznachen zaglavnoi bukvoi familii genial'nogo fizika-eksperimentatora akademika Kapicy P.L.), vpervye ustanovlennyi i priblizhenno vychislennyi avtorom v fevrale 2005g. (nizhe dan bolee tochnyi metod rascheta etogo koefficienta v noyabre 2007 g.);
l - dlina shaga vintovoi traektorii (volny de Broilya) dvizheniya svobodnogo kvanta kak funkciya vremeni t;
h - postoyannaya Planka;
c - postoyannaya skorosti sveta.
T- polnoe vremya zhizni kvanta pri svobodnom dvizhenii v IKZh prostranstva ot momenta ego izlucheniya (E=hy')do polnogo rasseyaniya v nei im svoei energii (E=h*0).

(Prodolzhenie sleduet.)
Naverh
V. M. Usachev
Re: PROSTRANSTVO KAK IDEAL'NAYa KVANTOVAYa ZhIDKOST' 4.02.2008 11:14

< tbody>
Citata:
7. Ishodya iz etih osnovopolagayushih idei , avtoru udalos' (vpervye v sentyabre 1967 goda) sostavit' universal'nuyu formulu (sistemu urav nenii), vyrazhayushuyu fundamental'nyi zakon sohraneniya i prevrasheniya energii v vide:
...=mc^2________ _______________________________(1)
V levoi chasti formuly (1) stoit vyrazhenie energii Planka E=hy dlya

V pervom soobshenii ne poluchilas' formula (1). Dolzhno byt' tak:

hy= us=mc^2_______________________________________(1)

﷯ ﷯﷯﷯﷯ ﷯﷯﷯﷯﷯﷯﷯﷯﷯﷯Astronet﷯ | ﷯Nauchn aya set'﷯ | ﷯GAISh MGU﷯ | ﷯Poisk po MGU﷯ | ﷯O proekte﷯ | ﷯Avtoram﷯ ﷯﷯﷯Komm entarii, voprosy? Pishite: ﷯﷯info@astronet.ru﷯﷯ ili ﷯syuda﷯ ﷯﷯﷯﷯﷯﷯﷯﷯﷯﷯﷯﷯﷯﷯﷯﷯﷯﷯﷯﷯ ﷯﷯﷯﷯ ﷯﷯﷯﷯﷯﷯╂㘲㈥㘳〵㜰㌥╂㘲㈥㘳〵㜰㌥╂㘲㈥ 㜰㌥╂ぃ䘥┱㉆䘥┰䕅䔥╄㕅䘥┲㘲㈥㘳〵㜰㌥⭂㜥⭃㈥┶㌲㔶〰┷䈳䌥╄ぅ䘥┳㝆䔥╄䐰〥╁ぅ䘥⭆䘥┱㕅䘥┲䍆㈥┶㌲㔶〰┷䈳┫䌷┫㘲㈥㘳〵㜰㌥ ㍃䌥┰㡃䐥⬸䌥╃㍃䐥┳㘲㈥㘳〵㜰㌥⭂㜥⭃㈥┶㌲㔶〰┷䈳䌥╆䕅䔥┸ㅆ䔥⭁䔥╆䕅┫䍃䌥┳㍄㈥┶㌲㔶〰┷䈳┫䌷┫㘲㈥㘳〵㜰㌥╂䕃┫䙅䘥┰䕅䔥┵䅅䘥┲㕅㈥┶㌲㔶〰┷䈳┫䌷┫㘲㈥㘳〵㜰㌥╂ぃ䔥┲㉆䔥╅う䔥┰䍅㈥┶㌲㔶〰┷ 㘲㈥㘳〵㜰㌥╂㘲㈥㘳〵㜰㌥╂㘲㈥㘳〵㜰㌥╂䅃䔥╅䍅䔥╃䄰䔥┵䑅䘥┲ぅ䘥┰㡅䔥┸䌲┫㉅䔥╅䙅䘥┰䕅䘥┱䉆㌥⭆䌥╆㡅䘥┸㡅䘥┲㕅㌥⭁㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳 潦慀瑳潲敮⹴畲㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳┫㡅䔥╂㡅┫㘲㈥㘳〵㜰㌥╂ㅆ䘥╅㑅䔥┰㘲㈥㘳〵㜰㌥⭂㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳㈥┶㌲㔶 䈳㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳㈥┶ 㔶〰┷䈳㈥┶㌲㔶〰┷䈳┫㘲㈥㘳〵㜰㌥╂㘲㈥㘳〵㜰㌥╂㘲㈥㘳〵㜰㌥╂㘲㈥㘳〵㜰㌥⭂㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳㈥┶㌲㔶〰┷䈳䘥┰ぅ䘥┱㉆䔥┰䑅䔥┸䙆┫䑆䔥 䘥┰䕅䔥╆㡅䔥┸䐰〥⭁㌥扃⭲㈥╆䔳䌥┴㕅䔥┹ㅆ䘥┲㉅䔥┸㉆䔥┵䉅䘥╃䑅䔥╅䌲┫䙅䔥⭅䘥┲㕅䔥╅う䔥┸㡅┫䅅䔥┲ぅ䔥╄㉆䔥╅㉅䘥╂㕆⬫〥╄㙅䔥┸㑅䔥╁䕅䘥┱㉆䔥┵ ┫㠲䌥⹂䌥⸴┫䉃䔥┰䑅䔥┴ぅ䘥┳㤲〥╁䅅䔥┲ぅ䔥╄㉆䘥⭂䘥╄䑅䔥┵う䔥┳㡅䔥⬸㈥┸䅅䔥┲ぅ䔥┷㡅䘥┷ぅ䘥┱㉆䔥┸㙆䘥╂㤲┫㉅䔥╅㝅䔥╄㡅䔥╁ぅ䘥╅㉆┫㡅䔥╂㡅┫㡅䘥┱㝆䔥┵㝅䔥┰䕆䘥⬲䔥⬲䔥╄㕅䔥⬹ 䔥┲䕅䔥┷う䔥┰ㅆ䘥┲ぅ䔥╄㡅䔥┵䍅┫㡅䔥╂㡅┫㍆䔥╃㕅䔥╄䍆䘥┸㕅䔥╄㡅䔥┵䍅┫㉆䔥┵䍅䔥╆㕅䘥┰ぅ䘥┲㍆䘥┰䉆┫㙅䔥┸㑅〥╄䄰䘥┱㉆䔥⸸ 㝃䔥╄ぅ䘥┷㡅䘥⬲䔥⬲䌥┸䅃䌥⬶䔥╆う䔥╅ㅆ䘥┲う䔥┰䑅䘥┱㉆䔥┲ぅ┫㉅䔥╅䅅䘥┰㍆䔥⬳䔥┳䕅䘥┰䙆䘥┷㕅䔥┳䕅⬫〥╄䙅䘥┳㝅䘥╂う䘥╃䅅䔥⬰䔥╆ぅ䘥┰ぅ⴫┫䑆䔥╂㕅䔥╁㉆䘥┰䕅䔥╄ぅ┫䕅䔥┱う〥╁㝅䘥┳㕅䘥┲ ⭆䔥╅ㅅ䔥╂ぅ䔥╁䕅┫䙅䔥╅㉅䘥╂㡆䔥┵䑅䔥╄䕅䔥⬹䔥╁䕅䔥╄㙆䔥┵䑅䘥┲う䔥┰㙆䔥┸㡅┫䅅䔥┲ぅ䔥┷㡅䘥┷ぅ䘥┱㉆䔥┸㙆㈥⭃䔥⬰䔥┲䕅䔥╁う䘥┳㍅ 㕆䔥╅䉅䔥╅㑅䔥╄䉆䘥⬵䔥╆う䔥╅㉆䔥╅䑅䔥⬰䔥⬸䔥╆䕅䔥┷㡅䘥┲う䔥╅䑅䔥⬰䔥╅ㅅ䘥┰ぅ䔥┷㍆䘥╅㉆䘥┱䙆┫䐰〥╁䉅䔥┰䅅䔥⬰䔥╆䕅䔥╄㡅䔥┶㕅䔥╄䑅䔥╅㥅┫䅅䔥╅䑅䘥┶㕅䔥╄㉆䘥┰ぅ䘥┶㡅䔥⬸䔥 䔥┰㝅䔥┸㝆䔥┰ㅆ䘥┲㡅䘥⸶⬫〥╄䑄䘥┲㡅┫䕅䔥┱䉅䔥┰䅅䔥⬰䔥⬸䔥╃䕅䔥┳㍆䘥⬲䘥┰ぅ䘥┱ㅆ䔥╃ぅ䘥┲う䔥┸㉅〥╁㉆䘥╃ㅆ䘥⭆䔥╄ぅ䔥╃㡅┫䅅䔥┰䅅┫ 䔥┸㝅䔥┸㝆䔥┵ㅆ䔥╁ぅ䘥⭆䘥┱㍆䘥┹䑅䔥╅ㅆ䘥┲䍆┫䑆䔥╂㕅䔥╁㉆䘥┰㡅䘥┷㕅䘥┱䅅䔥┸㕆┫䙅䔥╅䉅䔥┵㥅┫㉅䔥╅䅅䘥┰㍆䔥⬳䔥┷ぅ䘥┰䙆䔥┶㕅䔥╄䑅䘥╂㕆┫㝆䔥┰ㅆ䘥┲㡅䘥⬶䘥⬱䔥╅㑅䔥┸䑅䔥┰䅅䔥╅ ╂䍅䔥⬸䔥┸䉅䔥⬸〥╄䄰䔥╅㉆䔥┸㉅䔥╅䙅䔥╅䉅䔥╅㙅䔥╄䉆䔥╃㡅┫㝅䔥╄ぅ䔥╁ぅ䔥╃㡅┮㤲┫䌳牢┫䘲㌥╅䌳牢┫䘲㌥㍅⬮┫䐰䌥┸㝅┫䑆䘥┲㡅䘥⬵䔥 㕅┫䙅䘥┰㕅䔥┴ㅆ䘥┲ぅ䔥┲䉅䔥┵䑅䔥┸㥅┫ㅆ䔥╂㕅䔥┴㍆䔥┵㉆㈥⭃䘥┷㉆䔥⭅〥╁䕅䔥╁ぅ䔥╂㡅䔥┷ぅ䘥┶㡅䘥⭆䘥┴㍆䔥╄㑅䔥┰䍅䔥┵䑅䘥┲ぅ䔥╂䍆䔥╄䉆䘥⬵䘥╄䉅䔥┵䍅䔥┵䑅䘥┲ぅ䘥┰䑅䘥╂㕆┫㝆䔥┰ ┲㡅䘥⬶䔥╆䕅䔥┲㕅䘥┰㕆䔥╄䕅䘥┱㉆䘥╃䕆┫㙅䔥┸㑅䔥╁䕅䘥┱㉆䔥⬸䔥╆う䔥╅ㅆ䘥┲う䔥┰䑅䘥┱㉆䔥┲ぅ┫䙅䘥┰䕅䔥┸ㅆ䘥┵䕅䔥┴㡅䘥⬲䔥╆䕅䘥┱う䔥┵㑅 ╄䄰䔥┲䕅䔥⭃䘥┱㡅䔥⭂䔥┵㡂┫䙅䔥╅㉅䔥┵う䘥┵䑅䔥╅ㅆ䘥┲䑅䔥╅㍅䔥⭅䔥╄ぅ䘥┲䙆䔥┶㕅䔥╄㡅䘥⹆⬫〥╄䌳牢┫䘲㌥╅䌳牢┫䘲㌥㑅⬮䌥╆䕅䘥╄㉆䔥╅䍅䘥⬳䔥┲ㅆ䔥⬵䘥┱㉅䔥╅ㅅ〥╁㑅䔥╄䉆䔥⬵䘥╄䉅䔥┵䅅 う䔥╅䑅䘥╂䌲┫䙅䘥┰䕅䘥┲䕅䔥╄䉆┫㡅┫䙅䔥╅㝅䔥┸㉆䘥┰䕅䔥╄䉆┫㉅䔥⭅䌥┲ㅆ䔥┵䉅䔥┵䑅䔥╄䕅䔥┹䌲┫㡅䔥╃㕅䘥⭆䔥╅㑅䔥┸䑅䔥┰䅅䔥 ㉅䘥┳䕆┫ぅ䔥┱ㅆ䔥╅䉅䘥╅㉆䔥╄㍆䘥⭅䔥┲㕅䔥╂㡅䘥┷㡅䔥╄㍆攫┫䑆䔥╂㕅䔥╁㉆䘥┰㡅䘥┷㕅䘥┱䅅䔥┸㕆┫㝅䔥┰う〥╄䄰䔥╅㉅㈥⭃䔥┴䕅䔥╂㙅䔥╄䉆┫㡅䔥╃㕅䘥┲䍆┫䕅䔥┴㡅䔥╄ぅ䔥╁䕅䔥┲䉆䔥⬵䔥┴㡅䔥┰ ┵㉆䘥┰䉆⬫〥摄㈥⭃䘥┲ぅ䔥⭁䔥╁ぅ䔥⭁䔥╅䑅䔥⬸䔥╃䕅䔥┳㍆䘥⬲䔥╅ㅆ䘥┲ぅ䔥┲ぅ䘥┲䍆䘥┱䙆┫ㅆ䘥┲ぅ〥╁㡅䔥╂䍆䔥╄䉆䔥╃㡅┫㉆䔥╅䉅䘥╃ 䔥⭅䔥╆う䔥⬸䘥┳ㅆ䔥╂䕅䔥┲㡅䔥⬸䘥┰ぅ䔥┲䑅䔥╅㉅䔥┵ㅆ䔥┸䙆┫ㅆ䔥┸䉅┫䙅䔥╅㉅䔥┵う䘥┵䑅䔥╅ㅆ䘥┲䑅䔥╅㍅䔥⭅䔥╄ぅ䘥┲䙆䔥┶㕅䔥╄㡅䘥⭆䔥┶㡅䔥┴䅅䔥╅ㅆ䘥┲㡅┫䙅䘥┰䕅䘥┱㉆䘥┰ぅ䔥╄ㅆ䘥┲㉅䔥 ┫ㅆ䔥┶㡅䔥╃ぅ䘥╅㥆䔥┸㕆〥╄䄰䘥┲㡅┫㝆䔥┰ㅆ䘥┲㡅䘥┶䉆┫ㅆ䔥╄ぅ䘥┰㍆䔥┶㡅㈥⭃䔥⬸䔥┲䑅䘥┳㉆䘥┰㕅䔥╄䑅䔥┵㍅䔥⭅┫䐰䔥┴ぅ䔥┲䉅䔥┵䑅 ┸䙆┫䑆䔥╁㉅䔥┸㉅䔥┰䉅䔥┵䑅䘥┲䑅䔥╅㍅䔥⭅䔥╁㍆䔥╂䕅䔥╄䕅䔥┲ㅆ䔥╁㡅䔥⭃䘥┱㡅䔥╂ぅ〥╁䌲┫ㅆ䘥┲う䔥┵䍅䘥╆㥆䔥┸䍅䘥┱䙆┫う䔥┰㝅䔥╅う䔥┲ぅ䘥┲䍆┫㡅䘥⬵䔥┸㝅䔥╄㍆䘥┲う䔥⸸┫䌳牢 ㌥╅䌳牢┫䘲㌥㕅⬮䌥╆䕅䘥╄㉆䔥╅䍅䘥⬳䔥╃ぅ䘥┱ㅆ䔥⬰䔥┶㡅䔥┴䅅䔥╅䅅䘥┰㡅䘥┱㉆䔥┰䉅䔥╂㡅䘥┷㕅䘥┱䅅䔥╅㍅䔥⭅䔥╆う䔥╅㉆䔥╅䑅䔥┰䌲 㕅䘥┱㉆䔥┵ㅆ䘥┲䐰〥╁䑅䔥╄䕅㈥⭃䔥╄ぅ┫㉆䘥┰㡅┫䙅䔥╅う䘥╆㑅䔥╁ぅ┫ㅅ䔥╅䉅䘥╃㡆䔥⬵┫䐰䔥╃ぅ䘥┱ㅆ䘥⭂䘥╄䉅䔥┵䅅䘥┲う䔥╅䑅䔥ⴰ䔥╆㍆䔥┷䉆䘥┰䍆䔥╁ぅ┫䙅䔥┰う䔥┰䌲┫䙅䔥╅㑅䔥╅ㅅ䔥╄䕅┫う䔥┰ ╂㡅〥╁㡅䘥⭅䔥╆䉅䔥╅㉆䔥╄䕅䘥┱㉆䔥┵㥅┫䍅䔥╅䉅䔥┵䅅䘥┳䉅䘥╆う䔥╄䉆䘥⬵䔥┶㡅䔥┴䅅䔥╅ㅆ䘥┲㕅䔥⬹䔥⬸䔥┳ぅ䔥┷䕅䔥⸲┫ 牢┫䘲㌥╅䌳牢┫䘲㌥㙅⬮䌥┱㍆䔥┴㍆䘥┷㡅┫䙅䘥┳㝅䘥╂う䘥╃䅅䔥╅䍅┫䙅䔥┰う䔥⬰䔥⬲䔥┶㡅䔥┴䅅䔥╅ㅆ䘥┲㡅┫䙅䘥┰䕅䘥┱㉆䘥┰ぅ〥╄䄰䘥┲㉅䔥⬰䘥╄䉅䔥┵䅅䘥┲う䔥╅䑅┫䑆䔥╂ぅ䘥┱㉆䔥┸㝆䔥┵䑅⬫〥╄㡅 䔥╆う䘥┳㍅䔥⭅䔥┴㕅䘥┴䕅䘥┰䍅䔥┸う䘥┳㕅䘥┲ㅆ䘥⭆䔥╆う䔥⬸䘥┱㉆䔥╅䉅䔥╁䑅䔥╅㉅䔥┵䑅䔥┸䙆䘥⬵䘥┲㕅䔥⭃䔥┱䕅䔥╂䍆䘥┸㕅㈥ 〥╁㕅䔥⭃䔥┲䉆䘥┸㕅┫䑆䔥╄㕅䘥┰㍅䔥┸䙆┫ㅆ䘥┲ぅ䔥╂䅅䔥┸㉅䔥┰䕆䘥┹㡅䘥┵ㅆ䘥⭆䘥⬱䔥╄㡅䔥⭃䘥┷ぅ䘥┱㉆䔥┸㙆┫㡅┫㙅䈥┸ㅆ䘥┲䅅䔥┸㕆┫䅅䔥┲ぅ䔥╄㉆䔥╅㉅㈥⭃䔥╆䕅䘥╄㉆䔥╅䍅䘥⬳䔥┵㍅ 䔥┴㡅䔥┰䍅䔥┵㉆䘥⬰䔥╄㕅┫㍆䔥┴ぅ䈥┸㉆䘥┱䙆┫㡅䔥┷䍅䔥┵う䔥┸㉆䘥⭃〥╄䄰䘥┱䙅䔥┵う䔥┸䍅䔥┵䑅䘥┲ぅ䔥╂䍆䔥╄䕅⬮┫䐰㌥扃⭲㈥╆䔳㌥扃⭲㈥╆ ⸷┫㡃䘥┱㕆䔥╅㑅䘥⭆䔥┸㝅┫䑆䘥┲㡅䘥⬵䔥╅ㅆ䔥╄䕅䔥┲䕅䔥╆䕅䔥╂ぅ䔥┳ぅ䘥╅㥆䔥┸㕆┫㡅䔥┴㕅䔥┹䌲〥╁ぅ䔥┲㉆䔥╅う䘥⬳䘥┳㑅䔥┰䉅䔥╅ㅆ䘥⭃㈥┸㉅䔥╆㕅䘥┰㉅䘥╂㕅┫㉅┫ㅆ䔥┵䑅䘥┲䙆䔥┱う䔥⬵㤱 ㍅䔥╅㑅䔥┰㤲┫ㅆ䔥╅ㅆ䘥┲ぅ䔥┲㡅䘥┲䍆┫㍆䔥╄㡅䔥┲㕅䘥┰ㅆ䔥┰䉅䘥╃䑅䘥┳䕆┫㑆䔥╅う䔥╃㍆䔥╂㍆┫㠲䘥┱㡅䘥┱㉆䔥┵䍅䘥⬳䘥┳う䔥┰㉅䔥╄㕅䔥╄ 䔥┹㤲㈥⭃䔥┲䉆䘥┰ぅ䔥┶䐰〥╁㥆䘥┳䕆┫㑆䘥┳䑅䔥┴ぅ䔥╃㕅䔥╄㉆䔥┰䉅䘥╃䑅䘥╂㥅⬫〥╄㝅䔥┰䅅䔥╅䑅┫ㅆ䔥╅㕆䘥┰ぅ䔥╄㕅䔥╄㡅䘥⭆䔥⬸䔥╆う䔥┵㉅䘥┰ぅ䘥┹㕅䔥╄㡅䘥⭆䘥╄䑅䔥┵う䔥┳㡅䔥⬸䔥⬲䔥┲㡅䔥┴㕅 ㌥扃╲䄰㈥╆䔳⸮┮䐳捭㔥㉅彟彟彟彟彟彟彟彟彟彟彟彟彟彟彟彟彟彟彟╟㠲┱㤲┫䌳牢┫䘲㌥╅㉃┫䉅䔥┵㉅䔥╅㥅┫㝆䔥┰ㅆ䘥┲㡅┫㑆䔥╅う䔥╃㍆ ╂䉆┫㠲┱㤲┫ㅆ䘥┲䕅䔥┸㉆┫㉅䘥╂う䔥┰㙅䔥┵䑅䔥┸㕅┫䑆䔥╄㕅〥╄䄰䔥┸㡅┫䙃䔥╂ぅ䔥╄䅅䔥⬰╅䐳票⬫〥╄㑅䔥╂䙆┫㑆䔥╅㉆䔥╅䑅䔥╅㉅┫㠲䔥╁㉅䔥┰䑅䘥┲䕅䔥⬲䘥╄䉅䔥┵䅅䘥┲う䔥╅䍅䔥┰㍅䔥╄㡅䘥 䔥╅㍅䔥⭅䔥┸㝅䔥╂㍆䘥┷㕅䔥╄㡅䘥╆㤲㈥⭃䔥┳㑅䔥⬵⭨〥⭁䔥╆䕅䘥┱㉆䔥╅䙆䔥╄䑅䔥┰䙆┫䙃䔥╂ぅ䔥╄䅅䔥┰䌲礫⴫┫㝆䔥┰ㅆ䘥┲䕅䘥┲ぅ┫䅅䔥┲ぅ䔥╄㉆䔥 ┫㉃┫䙅䘥┰ぅ䔥┲䕅䔥⬹䘥┷ぅ䘥┱㉆䔥⬸䘥╄㉆䔥╅㥅┫㑆䔥╅う䔥╃㍆䔥╂䉆┫䑅䔥┰㕆䔥╅㑅䔥┸㉆䘥┱䙆┫㉅䘥╂う䔥┰㙅䔥┵䑅䔥┸㕅┫䙅䔥╅䉅䔥╄䕅䔥⬹䘥╄䑅䔥┵う〥╄䄰䔥⬸䔥╃ぅ䘥┱ㅆ䘥⭂╅䐳捭㔥㉅⬫〥╄㑅䔥╂䙆┫ ┰ㅆ䘥┲㡅䘥┶䉆┫ㅆ┫㡅䔥╄㕅䘥┰㉆䔥╄䕅䔥⬹㈥┸㍅䘥┰ぅ䔥┲㡅䘥┲㡅䘥┰㍆䘥╅㥆䔥┵㥅㈥⬹䔥╃ぅ䘥┱ㅆ䔥╅㥅洫㈥⭃䔥⬲䔥╁䕅䘥┲䕅〥╁㍆ ⭅䔥╃䕅䔥┳㍆䘥⬲䔥╆う䔥┵㉅䘥┰ぅ䘥┲㡅䘥┲䍆䘥┱䙆┫㑆䔥╅㉆䔥╅䑅䘥╂䌲┫䙅䔥╅䉅䔥╄䕅䘥┱㉆䘥╃䕆┫㡅䔥┷う䔥┰ㅆ䘥┵䕅䔥┴䕅䔥┲ぅ䔥⬲䔥╄ぅ┫䑆䘥┲䕅┫䙅䘥┰㕅䔥┲う䔥┰㥆䔥┵䑅䔥┸㕅┫ㅆ䔥┲䕅䘥 ╄䑅䔥┵う䔥┳㡅䘥⭅票⬮䐥┶㕅䔥╄㉆䘥┰ぅ䔥╂䍆䔥╄ぅ䘥⭆䘥┷ぅ䘥┱㉆䘥╃䐰〥獁┫㑆䔥╅う䔥╃㍆䔥╂䉆⬫〥╄㠲┱㤲┫㉅䘥╂う䔥┰㙅䔥┰㕅䘥 䔥╆䕅䘥┲㕅䔥╄㙆䔥┸ぅ䔥╂䍆䔥╄㍆䘥⭅䘥╄䑅䔥┵う䔥┳㡅䘥╅䌲┫ぅ䔥┱ㅆ䔥╅䉅䘥╅㉆䔥╄䕅┫う䔥┰㉅䔥╄㍆䘥⭅䘥┰䄰䔥┱䕅䘥┲㕅┫ㅆ䔥┸䉅┫䙅䔥╅㉅䔥┵う䘥┵䑅䔥╅ㅆ䘥┲䑅䔥╅㍅䔥⭅䔥╄ぅ䘥┲䙆䔥 䔥╄㡅䘥⭆䔥┶㡅䔥┴䅅䔥╅ㅆ䘥┲㡅┫䙅䘥┰䕅䘥┱㉆䘥┰ぅ䔥╄ㅆ䘥┲㉅䔥⬰䔥╆う䔥⬸䘥┱㡅䔥╄㉆䔥┵㝅䔥ⴵ䔥┰䑅䔥╄㡅䔥┳㡅䔥╂䙆䘥┶㡅䔥⬸䘥┷ぅ䘥┱㉆䔥┸㙆┫㡅 䅅䔥┲ぅ䔥╄㉆䔥╅㉅┫㡅䔥┷䉅䘥┳㝆䔥┵䑅䔥┸䐰〥╁㑅䘥┰㍆䔥⬳䔥⬲䔥┴う䘥┳㍅䔥⸰⬫〥╄㝃䔥┴㕅䘥┱䍆甫⴫┫䅅䔥╅䑆䘥┴㑆䔥┸㙆䔥┸㕅䔥╄㉆┫䙅䔥╅㉅䔥┵う䘥┵䑅䔥╅ㅆ䘥┲䑅䔥╅㍅䔥⭅䔥╄ぅ䘥┲ ┶㕅䔥╄㡅䘥⭆䔥┶㡅䔥┴䅅䔥╅䄰䘥┲㡅┫䙅䘥┰䕅䘥┱㉆䘥┰ぅ䔥╄ㅆ䘥┲㉅䔥┰䌲猫⴫┫䙅䔥╂䕅䘥┹ぅ䔥┴䍆┫䙅䔥╅㉅䔥┵う䘥┵䑅䔥╅ㅆ䘥┲㡅┫㙅䔥┸㑅䔥╁䕅䘥┱㉆ ⬸䔥╆う䔥╅ㅆ䘥┲う䔥┰䑅䘥┱㉆䔥┲ぅ㈥⭃䔥╂䕅䔥╁ぅ䔥╂㡅䔥┷㍆䘥╅㥆䔥┵㥅┫䅅䔥┲ぅ䔥╄㉆┫㡅䔥┷䉅䘥┳㝆䔥┵䑅䔥┸䙆┫㡅䔥╂㡅┫㝆䔥┰ㅆ〥╄䄰䘥┶㍆┫㡅┫䕅䔥┱う䔥┰㝅䘥┳䕆䘥┹㕅䔥⬹┫䐰䔥┵㡂┫㉅䔥 䘥┲う䔥┵䑅䔥╄䕆䘥⭅䘥┱㉆䘥┰㍆䔥╁㉆䘥┳う䘥⸳┫䌳牢┫䘲㌥╅䌳牢┫䘲㌥㡅⬮䐥┱䕅䔥┳䉅䔥┰ㅆ䔥╄䕅┫䅅䔥╂ぅ䘥┱ㅆ䔥┸㝆䔥┵ㅆ〥╁䕅䔥⬹ ╄䉅䔥┵䅅䘥┲う䔥╅ㅆ䘥┲ぅ䘥┲㡅䔥╁㕅┫䙅䔥╅䉅䔥╄ぅ䘥⭆䘥╄䑅䔥┵う䔥┳㡅䘥⭆䔥╁㍆䔥╂䕅䔥╄䕅䔥┲ㅆ䔥╁㡅䘥⬵䘥┱㡅䔥⭂䘥╄䉅䔥┵䅅䘥┲う䔥╅䑅䔥⬰䘥┰ぅ䔥┲䑅䔥⬰䘥┳㑅䔥┲䕅䔥┵䑅䔥╄䕅䔥╃㍆┫䅅䔥┲ぅ䔥 䔥┰㉆䘥⬳䔥┲㕅䔥╂㡅䘥┷㡅䔥╄䉆┫㕅䔥┳䕅┫㝅䔥┰う䘥╆㑅〥╄䄰䔥┴㕅䔥╂㡂䔥╄䑅䔥╅䍅䘥⬳┫䐰䔥╄ぅ┫㑅䔥┸ぅ䔥╃㕅䘥┲う┫䑆䔥╂㕅 ╁㉆䘥┰䕅䔥╄ぅ⬮䌥╆䕅䘥╄㉆䔥╅䍅䘥⬳䘥┴䕅䘥┰䍅䘥┳䉅䔥⬰㈥ㄸ㈥⬹䔥╆䕅䔥┷㉅䔥╅䉅䘥╆㕅䘥⬲䘥┲䕅䘥┷䑅䔥⭅䔥┲䉆䘥┷㡅䘥┱䉅〥╁㉆䘥⭃䔥┲㕅䔥╂㡅䘥┷㡅䔥╄䉆甫┫㡅搫㈥⭃䔥┸ㅆ䘥┵䕅䔥┴䙆┫㡅䔥⬷䔥╆う䔥 䘥┱㉆䔥┰㉅䔥╂㕅䔥╄㡅䘥⭆䔥╅ㅅ┫䑆䔥╂㕅䔥╁㉆䘥┰䕅䔥╄㕅┫䅅䔥┰䅅┫䙅䘥┳㝅䘥╂う䘥╃䅅䔥⬵䔥╆ぅ䘥┰ぅ┫㠲䔥╂㡅䘥┸㡂䔥╄䑅䔥 䍅┫㉅䔥╄㍆䘥┲う䔥┵䑅䔥╄㕅䔥⬹䘥┱㉆䘥┰㍆䔥╁㉆䘥┳う䘥╂㤲⬫〥╄䄰┫㙅䔥┸㑅䔥╁䕅䘥┱㉆䔥⬸䔥╆う䔥╅ㅆ䘥┲う䔥┰䑅䘥┱㉆䔥┲ぅ㈥⭃䘥┲ぅ䔥⭁䔥╁ぅ䔥⭁䔥╃䕅䔥┶䑅䔥⭅䘥┱䕅䘥┱㉆䔥┰㉅䔥┸㉆䘥 ┱㡅䘥┱㉆䔥┵䍅䘥⬳䔥┴㉅䘥┳㕆┫㍆䘥┰ぅ䔥┲䑅䔥┵䑅〥╁㥅┫ㅆ┫䑆䘥┲㡅䔥╃㡅┫㑅䔥┲㍆䔥╃䙆┫䑅䔥┵㡅䔥┷㉅䔥┵ㅆ䘥┲䑅䘥╂䍅䔥┸䄳┫䌳牢┫䘲㌥ㅅ㈥⬹ 㕅㔥㉅┫䘲搫┫䐳甫⭳㌥⭂㌥扃⭲㈥╆䔳┲㤲㈫䔥┵䔵⬲㈥⭆⭤㌥⭄⭭╣䔵┲䈳┫䌳牢┫䘲㌥╅㍅䔥┴㕅攫⴫┫䑆䔥╂㕅䔥╁㉆䘥┰䐰〥╁㕅䘥┱䅅䔥┸㥅⬫〥╄㝅䔥┰う䘥╆㑅┫䑆䔥╂㕅䔥╁㉆䘥┰䕅䔥╄ぅ㈥⭃⭵⬭䔥╄㕅 㝅䔥┲㕅䘥┱㉆䔥╄䉆䔥⬹䔥╁䕅䘥╄㑆䘥┴㡅䘥┶㡅䔥┵䑅䘥⬲䔥╆䕅䔥┲㕅䘥┰㕆䔥╄䕅䘥┱㉆䔥╄䕅䔥┳䕅┫䑅䔥┰㉆䘥╆㙅䔥┵䑅䔥┸䙆┫䄰䔥┸㑅䔥╁䕅䘥┱㉆䔥⬸䔥╆う䔥╅ 䘥┲う䔥┰䑅䘥┱㉆䔥┲ぅ㌥⭂⭤⬭䔥╄㕅䔥┸㝅䔥┲㕅䘥┱㉆䔥╄䉆䔥⬹䔥┴㡅䔥┰䍅䔥┵㉆䘥⬰䘥╄䉅䔥┵䅅䘥┲う䔥╅䑅䔥┰䈳猫㌥㍄㈥ㅃ搴㔥㉅⴫┫䙅䔥╂䕅䘥┹ぅ䔥┴䍆┫ㅆ䘥┴㕅䘥┰㡅䘥┷㕅䘥┱䅅䔥╅㥅┫䙅䔥╅㉅䔥┵う 䑅䔥╅ㅆ䘥┲㡅⬫〥╄䙅䘥┳㝅䘥╂䐰〥╁䅅䔥ⴰ䘥╄䉅䔥┵䅅䘥┲う䔥╅䑅䔥┰䌲洫⴫┫䍅䔥┰ㅆ䘥┱ぅ┫䑆䔥╂㕅䔥╁㉆䘥┰䕅䔥╄ぅ㈥⭃⭣⬭䘥┱䅅䔥╅ 䔥╅ㅆ䘥┲䍆┫ㅆ䔥┲㕅䘥┲ぅ⬮㌥扃⭲㈥╆䔳䌥╆䕅䔥┴ㅆ䘥┲ぅ䔥┲㡅〥⭁䘥┱䙅䘥┰ぅ䔥┲䕅䘥┷䑅䘥╂㕅┫㝆䔥┸ㅆ䔥╂㕅䔥╄䑅䘥╂㕅┫㝅䔥╄ぅ䘥┷㕅䔥╄㡅䘥⭆䔥┸㝅䔥┲㕅䘥┱㉆䔥╄䉆䘥⬵䔥┲㕅䔥╂㡅䘥┷㡅䔥╄䌲┫㡅┫う 㡆䔥┸㉅┫ㅆ䔥┸ㅆ䘥┲㕅䔥╃㍆┫㍆䘥┰ぅ䔥┲䑅䔥┵䑅䔥┸㥅ㄫ㈥⬹䔥⬸┲㤲┫䙅䔥╅䉅䘥┳㝆䔥┰㕅䔥⭃䘥┰ぅ䘥┱㝆䈥┸㉆䔥╄㍆䘥╅䐰〥╁䐰䔥┲ 䔥╂㡅䘥┷㡅䔥╄㍆┫㑅䔥┸ぅ䔥╃㕅䘥┲う䔥⬰䘥┱㉅䔥╅ㅅ䔥╅㑅䔥╄䉆䘥⬵䘥┴㍆䔥╄㑅䔥┰䍅䔥┵䑅䘥┲ぅ䔥╂䍆䔥╄䉆䘥⬵䔥┷ぅ䘥┰䙆䔥┶㕅䔥╄䑅䘥╂㕆┫䑆䔥╂㕅䔥╃㕅䔥╄㉆䔥┰う䔥╄䉆䘥⬵〥╁ぅ ㉆䔥┸㙆㌥⭁㌥扃⭲㈥╆䔳⭤㌥⭄┰䌲㘵⬳⬪〱㔥ⵅ㈱┫ㅆ䔥╃䈳┫䌳牢┫䘲㌥╅㡅┫䑅䔥╅㉅䘥┳䕆┫㑆䘥┳䑅䔥┴ぅ䔥╃㕅䔥╄㉆䔥┰䉅䘥╃䑅䘥┳䕆┫䍅䔥┸う䔥╅㉅䘥┳䕆┫ 䔥╅䑅䘥┱㉆䔥┰䑅䘥┲㍆┫䌳牢┫䘲㌥畅┫䐳〫㈥㡃㌲〥╄䄰〥⩄ㄫ┰䔵㠱┫䑆䘥┰㍅㈥╆ㅆ䔥╃䔵┲䐳〫㈥㡃㌲⨫ㄫ┰䔵㠱┫㑅䔥┸䑅㈥╆ㅆ䔥⹃┫䌳牢┫䘲㌥╅䌳牢┫䘲㌥╅䙃䐥┰㡃䌥╃㕃䐥┷ぃ䌥╄㡃䌥⬵䐥┱㡅䘥 䔥┵䍅䔥⬰䘥┳う䔥┰㉅䔥╄㕅䔥╄㡅〥⭁㈥ㄸ㈥⬹䘥┳䅅䔥┰㝅䘥╂㉅䔥┰㕅䘥⬲䔥╄ぅ┫䑆䔥╁㉅䔥┸㉅䔥┰䉅䔥┵䑅䘥┲䑅䔥╅ㅆ䘥┲䍆┫䍅䔥┰ㅆ䘥┱䉆┫㑆䘥┳䑅䔥┴ぅ䔥 㕅䔥╄㉆䔥┰䉅䘥╃䑅䘥╂㕆┫㝆䔥┰ㅆ䘥┲㡅䘥⬶䔥╆䉅䔥╅㥆䔥┰㑅䔥⬸䔥╆䕅䔥┲㕅䘥┰㕆䔥╄䕅䘥┱㉆䔥⬸䔥┶㡅䔥┴䅅䔥╅ㅆ䘥┲㡅⬫〥╄䙅䘥┰䕅䘥┱䐰〥╁ぅ䔥╄ㅆ䘥┲㉅䔥┰䌲┫䉅䔥╅䅅䔥┰䉅䔥┸㝅䘥┳䕆䘥┹㕅䔥 ┷ぅ䘥┱㉆䔥┸㙆䘥⭂䔥⬸䔥╅ㅅ䘥┰ぅ䔥┷㍆䘥╅㥆䔥┵㥅┫㉅䔥╄㍆䘥┲う䔥┵䑅䔥╄䕆䘥⭅䘥┱㉆䘥┰㍆䔥╁㉆䘥┳う䘥⬳䔥╆う䔥╅㉆䔥╅䑅䔥╅㉅⬮ ╄䅅䘥┱䙅䔥┵う䔥┸䄰䔥┵䑅䘥┲ぅ䔥╂䍆䔥╄䕅┫䑆䘥┲䕅┫䙅䔥╅㑅䘥┲㉅䔥┵う䔥┶㑅䔥┰㕅䘥┲ㅆ䘥⭆䘥╄䅅䔥┲㡅䔥┲ぅ䔥╂㕅䔥╄㉆䔥╄䕅䘥┱㉆䘥╃䕆┫㑅䔥┵㑆䔥┵䅅䘥┲ぅ┫䍅䔥┰ㅆ䘥⬱䘥╄䑅䔥┵う䔥┳㡅䔥⬸䘥 䘥┱䙅䔥┰㑅䔥⬰䔥⬸䘥┱㡅䔥╄㉆䔥┵㝅䔥⬰┫䐰䘥╆㑅䔥┵う㈥⭃䔥⬰䘥┲㕅䔥╅う䔥┵㉆䔥┸㝆䔥┵䐰〥╁㡅┫䅅䔥┰䙅䔥┵䉅䘥╃䑅䔥ⵅ䔥╅ㅅ䔥╅䉅䔥╅ 䔥┵㝆䔥╄䕅䔥⬹䔥╃䕅䔥┴㕅䔥╂䍆䘥⭅䘥╆㑅䔥┵う┫ぅ䘥┲䕅䔥╃䕅䔥⸲┫䌳牢┫䘲㌥╅䌳牢┫䘲㌥㥅⬮䌥┸㝅䔥╂䕅䔥┶㕅䔥╄䑅䘥╂㕅┫䄰䘥┱䑅䔥╅㉅䔥╅䙅䔥╅䉅䔥┰㍅䔥┰䕆䘥┹㡅䔥⬵䔥┸㑅䔥┵ 㡅┫㑆䔥╅う䔥╃㍆䔥╂ぅ┫㠲┱㤲┫㑅䔥┰䕆䘥⬲䔥┸ㅆ䔥╁䕅䔥╃㍆䘥⭅䔥╅㑅䔥╄䕅䔥┷䑅䔥┰㝆䔥╄㍆䘥⭅䔥┲㝅䔥┰㡅䔥╃䕅䘥┱㉅䘥╆㝅䘥⭃䔥┲ㅆ䔥┵㕆┫㑆䘥┳䑅 ┴ぅ䔥╃㕅䔥╄㉆䔥┰䉅䘥╃䑅䘥╂㕆⬫〥╄㑆䔥┸㝅䔥┸㝆䔥┵ㅆ䔥╁㡅䘥⬵〥╄䄰䔥┰㡅䔥╃䕅䔥┴㕅䔥┹ㅆ䘥┲㉅䔥┸㥅㌥⭁䘥╄䉅䔥┵䅅䘥┲う䔥╅ㅆ䔥╂ぅ䔥┱䕅䔥┳䕅⴫票㈥⭃䘥┱㡅䔥╂䍆䔥╄䕅䔥┳䕅⴫甫╳䌲┫ ╄㕅䘥┰㉆䔥╄䕅䔥┳う䔥┰㉅䔥┸㉆䔥┰㙆䔥┸䕅䔥╄䑅〥╁㍅䔥⭅洫╣䔵⬲䔥⬸䘥┱䑅䔥┸䍅䔥┰䕆䘥⬲䔥┲ㅆ䔥⬵䔥╆ぅ䘥┰ぅ䔥┴䕅䔥╁ㅆ䘥⭂䘥┰㕅䔥╂䙆䘥┲㡅䔥┲㡅䘥┱㉆ ┱䅅䔥╅㥅┫㡅┫䅅䔥┲ぅ䔥╄㉆䔥╅㉅䔥╅㥅┫㑆䔥┸㝅䔥┸䅅䔥┸䌲┫䙅䔥╅䉅䔥╄䕅䘥┱㉆䘥╃䕆┫䕅䔥┱䅆䘥╆ㅆ䔥╄䙆䘥⭆┫䐰䔥╆䕅䘥┱䉅䔥┵㑅䔥╄㡅䔥⬵䘥⬱䔥╆䕅䔥┷㡅䘥┶䐰〥⭁䔥╁䉅䔥┰ㅆ䘥┱㡅 㕅䘥┱䅅䔥╅㥅┫㑆䔥┸㝅䔥┸䅅䔥⸸┫䌳牢┫䘲㌥╅䌳牢┫䘲㌥ㅅ⸰┫䑃䔥┰䙅䘥┰㡅䔥╃㕅䘥┰䌲┫䙅䘥┰㕅䘥┱䉅䔥╅㉅䘥┳㉆䘥╂㥅┫䅅䔥╅う䔥╆㍆䘥┱䅅〥╁䉅䘥 う䔥╄䕅⴫┫㉅䔥╅䉅䔥╄䕅䔥┲䕅䔥⬹䔥┴㍆䔥┰䉅䔥┸㝅䔥⭃䔥╁㉅䔥┰䑅䘥┲䕅䔥┲䕅䔥⬹䘥┴㡅䔥┷㡅䔥╁㡅┫䉅䔥┵㍅䔥╁䕅┫䙅䔥╅䑅䘥╆㉆䘥╃䌲┫㍅䔥╂䙆䔥┴䙆┫䑅䔥⬰䔥╆㍆䔥┷䉆䘥┰䍆䔥╁㡅┫䙅䔥┰う䔥┰䌲┫㉅䘥┱ ╂䉆䔥┲ぅ䘥╅㥆䔥┸㕅⬫〥╄ㅆ䔥⭅䔥┴䑅䔥┰䐰〥╁䕅䘥┱㍆䔥┴ぅ┫䑅䔥⬰䔥╆䕅䔥┲㕅䘥┰㕆䔥╄䕅䘥┱㉆䘥⭃䔥┲䕅䔥┴䉆⬮䌥╅䑅䔥⬸䔥┲ㅆ䔥╆䉅䘥╂㉅ ┰䕆䘥⬲䔥╄㕅┫ㅆ䘥┲う䔥╅㍅䔥⭅䔥┲㕅䘥┰㉆䔥┸䅅䔥┰䉅䘥╃䑅䔥╅䌲┫ぅ┫䙅䔥⭅䘥┱䙅䔥┸う䔥┰䉅䘥╃䑅〥ⵁ䔥┲㡅䔥╄㉆䔥╅㉅䔥╅㥅┫㉆䘥┰ぅ䔥┵䅅䘥┲䕅䘥┰㡅䔥⬸䔥┲䕅䔥╁う䘥┳㍅┫㉅䔥┵う䘥┲㡅䔥╁ぅ䔥╂ ╄䕅䔥⬹䔥╅ㅆ䔥⸸┫㉄䔥╅㝆䔥╄䕅┫㉆䔥┰䅅┫㙅䔥⬵䘥┷ぅ䘥┱㉆䔥┸㙆䘥⭂䔥⬸䔥╁㉅䔥┰䑅䘥┲䉆┫㡅䔥┷䉅䘥┳㝆䔥┵䑅䔥┸䙆⬫〥╄㠲 ┲䕅┫㕅䘥┱㉆䘥⭃䔥┶㡅〥╄䄰䔥╅䅅䘥┰㡅䘥┱㉆䔥┰䉅䔥╂㡅䘥┷㕅䘥┱䅅䔥┸㕅┫䕅䔥┱う䔥┰㝅䔥╅㉅䔥┰䑅䔥┸䙆┫㡅┫䙅䘥┳㝅䘥╂う䘥╃䅅䔥⬸䔥╆ぅ䘥┰ぅ㈥⬹䔥┴㉅䔥┸㙅䘥┳㉆䘥┱䙆┫㉅┫㙅䔥┸㑅 䕅䘥┱㉆䔥⬸䔥╆う䔥╅ㅆ䘥┲う䔥┰䑅䘥┱㉆䔥┲ぅ┫㉅┫ㅆ〥╁䕅䔥┱䕅䔥┴䑅䔥╅䍅┫ㅆ䔥╅ㅆ䘥┲䕅䘥╆䑅䔥┸㡅┫䑅䔥⬵䔥╆䕅┫䙅䘥┰䙆䔥╃䕅䔥╂㡅䔥╄㕅䔥 䑅䘥╂䍅┫㉆䘥┰ぅ䔥┵䅅䘥┲䕅䘥┰㡅䘥╆䍅㈥⭃䔥⬰䔥╆䕅┫ㅆ䔥╆㡅䘥┰ぅ䔥╂䍆䔥╄䕅┭㉅䔥┸䑅䘥┲䕅䔥┲䉆䔥⭃┫䐰㈥┸㉅䔥╅䅅䘥┰㍆䔥⬳䔥╆う䘥╆䍅䔥ⵅ┫㡅䔥╂㡅┫䅅䘥┰㡅䔥┲䕅䔥╂㡅䔥╄䐰〥╁䑅䘥╂ 䕅䘥┱㕅䔥⬹䔥┲㡅䔥╄㉆䔥╅㉅㈥⸹┫䌳牢┫䘲㌥╅䌳牢┫䘲㌥ㅅ⸱┫㉄䔥┰䅅䔥┸䍅┫䕅䔥┱う䔥┰㝅䔥╅䍅㈥⭃䔥┴䉅䔥┸䑅䘥⭂䔥┲䕅䔥╂䑅┫㑅䔥⬵䌥┱う ╅㥅䔥╂䙆┫䄰┫䅅䔥┲ぅ䔥╄㉆䔥╅㉅┫㡅䔥┷䉅䘥┳㝆䔥┵䑅䔥┸䙆┫ㅆ䔥╂㕅䔥┴㍆䔥┵㉆┫䙅䔥╅䑅䔥┸䍅䔥┰㉆䘥⭃䔥╁ぅ䔥⭁䘥┸ぅ䔥┳㡅┫㉅䔥┸㉆䔥╁䕅䔥⬲䔥┲㡅䔥╄㉆䔥╅㉅䘥╂㕆┫㉆䘥┰ぅ䔥┵䅅䘥┲䕅䘥┰㡅䔥⬹┫ ┴㉅䔥┸㙅䔥┵䑅䔥┸䙆┫㝆䔥┰ㅆ䘥┲㡅䘥⬶䔥⬸䔥╁㉅䔥┰䑅䘥┲䕅䔥┲䌲┫ぅ┫㡅䘥⬵䘥┷䐰〥╁㉆䔥╅㉆䘥⬳䔥╂㕅䔥┳䅅䔥⭅䔥╆䕅䔥╄䙆䘥┲䍆┫䅅䔥┰䅅┫㝆䔥┸ㅆ ╂䕅┫㉆䔥┰䅅䔥┸㕆┫㉅䔥┸㉆䔥╁䕅䔥⬲䔥⬲䘥┱㕅䔥╁㍆䔥╄㑅䘥⸳┫䌳牢┫䘲㌥╅䌳牢┫䘲㌥ㅅ⸲┫㉃〥╁䑅䘥┲䕅䔥┲䕅䔥⬵䔥╆う䔥┰㉅䔥╅㕅┫㡅䔥╂㡅┫䉅䔥┵㉅䔥╅㕅┫䑅䔥┰䙅䘥┰ぅ䔥┲䉅䔥┵䑅䔥┸㕅┫㉅䔥┸㉆䔥 䔥⬲䘥┲う䔥┰㕅䔥╁㉆䔥╅う䔥┸㡅┫㑅䔥┲㡅䔥┶㕅䔥╄㡅䘥⭆䘥┷ぅ䘥┱㉆䔥┸㙆⬫〥╄㡅┫㑆䔥╅㉆䔥╅䑅䔥╅㉅┫䉅䔥┵㍅䔥╁䕅┫䕅䔥┱ 䘥╆ㅆ䔥╄䙆䔥┵䐰〥╁䙅䔥╅䙅䔥┵う䔥┵㝆䔥╄䕅䘥┱㉆䘥⭃䘥╄䉅䔥┵䅅䘥┲う䔥╅䍅䔥┰㍅䔥╄㡅䘥┲䑅䘥╂㕆┫㉅䔥╅䉅䔥⭄䔥⬸䔥┴㉅䔥╅㥅䔥╄䕅䔥⬵䔥╆う䔥┵䉅䔥╅䍅䔥╂㕅䔥╄㡅䔥⬵䘥┱㉅䔥┵㉆䔥⬰㈥┸ぅ┫㝅䔥 䘥┷㡅䘥┲䌲┫ㅆ䔥╆㡅䔥⭄䔥┸䄰䔥┵㍅䔥⭅䔥┷䑅䔥┰䅅㈥⸹┫䌳牢┫䘲㌥╅䌳牢┫䘲㌥ㅅ⸳┫䙃䔥╅䑅䔥┸䍅䔥┰䑅䔥┸㕅┫㑆䔥┸㝅䔥┸㝆䔥┵ㅆ䔥╁䕅䔥⬹䘥┱㍆䘥 䑅䔥╅ㅆ䘥┲㡅┫䙅䘥┰䕅䘥┱㉆䘥┰ぅ䔥╄ㅆ䘥┲㉅䔥⬰┫䐰䌥┲ㅆ䔥┵䉅䔥┵䑅䔥╄䕅䔥⬹䔥╁ぅ䔥⭁䔥┶㡅䔥┴䅅䔥╅ㅆ䘥┲㡅┫䙅䔥╅㝅〥╄䄰䔥╂䙆䔥┵㉆┫䉅䔥┵㍅䔥╁䕅┫䙅䔥╅䑅䘥╆㉆䘥⭃䔥╁ぅ䘥┷㕅䘥┱㉆䔥┲㕅䔥╄䑅䘥 ┫䅅䔥┰う䘥┲㡅䔥╄㍆┫㉆䔥┵䑅䔥┷䕅䘥┰䑅䔥╅㥅┫㉆䔥┵䕅䘥┰㡅䔥⬸䔥┳う䔥┰㉅䔥┸㉆䔥┰㙆䔥┸㡅┫ぃ⬮䐥╄㥅䔥╄㡆䘥┲㕅䔥┹䑅䔥⸰ ╁㉄䔥┰䅅㈥⭃䔥╆う䔥┸ㅆ䔥╃䕅䘥┲う䔥┵㉅䘥┸㡅䘥┱䍆┫䅅┫䙅䘥┳㝅䘥╂う䘥╃䅅䔥┰䍅┫㉅䔥╅㝅䔥┴㍆䘥┵ぅ┫䑅䔥⬰䔥╆䕅䔥┲㕅䘥┰㕆䔥╄䕅䘥┱㉆䔥⬸䘥┷ぅ䘥⭆䔥┸䉅䔥⬸┫䐰䔥╁䕅䘥┴㕅┫㉅┫ㅆ䘥┲ぅ䔥╁ぅ 㕅㈥⭃䔥╂㕅䔥┳䅅䔥⭅䔥┷ぅ䔥╃㕅䘥┲㡅䘥┲䍆㈥⭃䘥┷㉆䔥⭅䔥╅䑅〥╄䄰䘥┳ㅆ䔥╁䕅䘥┰㕅䔥╄䑅䔥⭅䘥┱ㅅ䔥╂㡅䔥┶ぅ䘥╅㉆䘥┱䙆┫㑅䘥┰ 䔥⬳䘥⬱䔥┴う䘥┳㍅䔥╅䍅㈥⭃䔥╅ㅅ䘥┰ぅ䔥┷㍆䘥⭆䔥╅ㅆ䘥┲う䔥╅㉅䔥╁㡅┫䙅䔥┵䑅䘥⹂┫䑄䘥┲䕅┫䙅䘥┰䕅䔥┸ㅆ䘥┵䕅〥╁㡅䘥⬲䔥╆䕅䘥┲䕅䔥╃㍆㈥⭃䘥┷㉆䔥⭅䔥╄㕅䔥╆う䔥┵う䘥╂㉅䔥╄䕅┫㡅䘥┱ ┰う䘥╆䕆䘥┹㡅䔥┵ㅆ䘥⭆䘥⬱䔥╆䕅䔥┲㕅䘥┰㕆䔥╄䕅䘥┱㉆䔥⬸䔥╆㍆䔥┷䉆䘥┰䍆䔥╁ぅ⬫〥╄䍅䔥╅䉅䔥┵䅅䘥┳䉅䘥⭂䔥┷ぅ䔥╃㕅䘥┹ぅ䘥╅㉆䘥┱ ┫ㅅ䔥╂㡅䔥┶ぅ䔥┹㡆䔥┸䍅䔥⬸䔥╃䕅䔥╂㕅䔥╁㍆䔥╂ぅ䔥╃䐰〥╁㡅䔥⬷䔥╅䅅䘥┰㍆䔥┶ぅ䘥╅㥆䔥┵㍅䔥⭅䔥╆㍆䔥┷䉆䘥┰㡂䔥⭁䔥╆䕅䔥┲㕅䘥┰㕆䔥╄䕅䘥┱㉆䔥╄䕅䔥┳䕅┫ㅆ䔥╂䕅䘥⭆䔥┶㡅䔥┴䅅䔥╅ㅆ䘥┲ 䐥┲ぅ䔥╁㡅䔥⭃䔥╅ㅅ䘥┰ぅ䔥┷䕅䔥╃䌲┫䙅䘥┳㝅䘥╂䄰䈥┸䅅┫䑅䔥┵䙅䘥┰㕅䘥┰䉆䔥┲䑅䔥⭅䔥╄ぅ䘥┲䙆䔥┳㡅䔥┲ぅ䔥┵㉆┫䑅䔥⬰䘥┱㕅䔥┱䙆┫䙅 ╅㉅䔥┵う䘥┵䑅䔥╅ㅆ䘥┲䑅䘥╂㥅┫ㅆ䔥╂䕅䔥⬹䔥┶㡅䔥┴䅅䔥╅ㅆ䘥┲㡅㈥⭃┫䐰䔥╆䕅䔥┴㉆䘥╆㍅䔥┸㉅䔥┰䙆┫䅅┫ㅆ䔥┵ㅅ䔥⬵䔥┴う䘥┳㍅䔥┸㕅┫䙅䘥┳㝅䘥╂う〥╄䄰䔥⸸┫㉄䔥⭅䔥┶㕅┫ㅆ䔥┰䍅䔥╅㕅┫䙅䘥┰䕅䔥 䘥┵䕅䔥┴㡅䘥⬲䔥⬸䔥┲䑅䘥┳㉆䘥┰㡅┫㙅䔥┸㑅䔥╁䕅䘥┱㉆䔥⬸䔥╆う䔥╅ㅆ䘥┲う䔥┰䑅䘥┱㉆䔥┲ぅ┫ㅆ┫䑆䔥╂㕅䔥╃㕅䔥╄㉆䔥┰う䔥╄䉆䔥╃㡅 㝆䔥┰ㅆ䘥┲㡅䘥┶䄰䔥╃㡅┫㡅┫䉅䘥╅ㅅ䘥╂䍅䔥⬸䘥┴㡅䔥┷㡅䘥┷㕅䘥┱䅅䔥┸䍅䔥⬸䔥╅ㅅ䘥╁㕅䔥╁㉆䔥┰䍅䔥┸䌲┫㉆䔥╅䉅䘥╃䅅䔥⭅䔥┲䍅䔥┵ㅆ䘥┲䕅┫䍅䔥╅䉅䔥┵䅅䘥┳䉅┫㉆䔥┰䍅⬫〥╄㑅䔥┵ ┱㉆䔥┲㍆䘥╅㉆┫䅅䔥┲ぅ䔥┷㡅䘥┷ぅ䘥┱㉆䔥┸㙆䘥⭂㈥┸㉆䔥⭅䔥┵ㅆ䘥┲䍆┫䙅䘥┳㝅䘥╂う〥╄䄰䔥⬸䔥╆ぅ䘥┰ぅ⴫┫䅅䔥┲ぅ䔥╄㉆䘥⭂䘥╄䑅䔥┵う䔥┳ 䔥┸㤲┫ㅆ䔥╅㍅䔥╂ぅ䘥┱䑅䔥⭅䘥┴䕅䘥┰䍅䘥┳䉅䔥⬵㈥ㄸ㈥⸹┫䌳牢┫䘲㌥╅䌳牢┫䘲㌥ㅅ⸴┫䙃䘥┰㕅䔥┴ㅆ䘥┲ぅ䔥┲䉅䔥┵䑅䔥┸㕅┫䕅┫䙅䘥┰䕅〥╁㉆䘥┰ぅ䔥╄ㅆ䘥┲㉅䔥⬵䔥╁ぅ䔥⭁䔥┶㡅䔥┴䅅䔥╅ㅆ䘥┲㡅 䔥╂㡅䔥┷䅅䔥╅㥅┫䅅┫㡅䔥┴㕅䔥┰䉅䘥╃䑅䔥╅㥅┫㑅䔥┰㡂䘥⬲┫䐰䘥┱䕅䔥┲㕅䘥┰㡆䔥┵䑅䔥╄䕅┫㡅䔥╄㍆䘥⭅䘥┲㕅䔥╅う䔥┸䕆┫䑅䔥┰ㅅ䔥╂ 䔥┴ぅ䔥┵䍅䔥╅㍅䔥⭅䔥┳ぅ䔥╂ぅ䔥╁㉆䔥┸㝆䔥┵ㅆ䔥╁䕅〥╄䄰┫䅅䘥┰ぅ䘥┱䑅䔥╅㍅䔥⭅䘥┱䍅䔥┵㥆䔥┵䑅䔥┸䙆㈥⭃䘥┷㕅䔥⭃䘥┰㕅䔥╂䙆䘥┲㡅䔥┲㡅䘥┱㉆䘥┱䅅䔥┰䙆┫䅅䔥╅ㅆ䔥╃䕅䔥╂䕅䔥┳㡅䘥⭆ 䔥╆う䘥╆䍅䔥╅䉅䔥┸䑅䔥┵㥅䔥╄䉆䔥⬹䔥┷ぅ䔥╁䕅䔥⭄䐥┵ぅ䔥┱ㅅ䔥╂䄰┫㠲╶䐳版㈥┹䌲┫䑅䔥⬵䔥┲䉆䔥╆䕅䔥╂䑅䘥╆䕆䘥┹㡅䔥┹ㅆ䘥╆䌲┫䅅䔥┰䅅┫㉅䘥 䙆䘥┱䑅䔥┸䉅䔥╅ㅆ䘥╃䌲⬫〥╄㑅䔥╂䙆┫㑅䔥┰䉅䈥┸䅅䔥┸㕆┫㍅䔥┰䉅䔥┰䅅䘥┲㡅䔥⹁┫㡃䘥┱㕆䔥╅㑅䘥⭆䔥┸㝅┫㝅䔥┰䅅䔥╅䑅䔥╅㉅┫䅅䔥╂ぅ䘥┱ㅆ䔥┸㝆䔥┵ㅆ䔥╁䕅䔥⬹䘥┴㡅䔥┷㡅䔥╁㡅㈥⭃䔥┰䐰〥╁㡅䔥 䔥┰㉆䔥┸㝅䔥┰㙆䔥┸㡅┫䙅䘥┰䕅䘥┱㉆䘥┰ぅ䔥╄ㅆ䘥┲㉅䔥⬰䔥╁ぅ䔥⭁䌥┸䅃䌥⬶䔥⬸䔥╄ぅ䘥┷ぅ䔥⭂䔥┵㡂┫㉆䔥┵䕅䘥┰㡅䔥┸䌲┫ぅ䔥┲㉆ ╅う䔥╅䍅┫㉅┫㑆䔥┵㉅䘥┰ぅ䔥╂㕅㈫〰┵䄰⬮䔥┲䉆䔥┲㕅䔥┴㕅䔥╄䉆┫㠲䔥⬰䔥⬲䔥╄䕅䘥╆ㅅ䘥┰㕅㈫〰┷㍅⬮䔥╅㉆䔥╁䕅䘥┰う䔥┵䅅䘥┲㡅䘥┰䕅䔥┲ぅ䔥╄䉆㈥⬹┫䐰䘥┱䉅䔥┵㑅䘥┳䕆䘥┹㡅䔥⬵䘥┴䕅䘥┰ ┳䉅䘥⭂䔥┷ぅ䔥┲㡅䘥┱㡅䔥╃䕅䘥┱㉆䔥⬸䘥┷ぅ䘥┱㉆䔥╅㉆䘥╂䌲┫䑆䔥╄㕅䘥┰㍅䔥┸㡅㈥⭃䔥┴䉅䔥┸䑅䘥⭂䔥┲䐰〥╁䑅䘥⭂䔥⬸䔥┲う䔥┵ 䔥┵䑅䔥⬸䔥┶㡅䔥┷䑅䔥⬸䘥┴䕅䘥┲䕅䔥╄䕅䔥⬲㈥┸䅅䔥┲ぅ䔥╄㉆䔥╅㉅┫䑆䔥╂㕅䔥╁㉆䘥┰䕅䔥╃ぅ䔥┳䑅䔥┸㉆䔥╄䕅䔥┳䕅┫㡅䔥┷䉅䘥┳㝆䔥┵䑅䔥┸䙆㈥┹䌲┫䄰䔥┲䕅䔥┱䕅䔥┴䑅䔥⭅䔥┴㉅䔥┸㙅䘥┳㥆䔥 䘥┱䙆┫㉅┫䅅䔥╅ㅆ䔥╃㡅䘥┷㕅䘥┱䅅䔥╅䍅┫䙅䘥┰䕅䘥┱㉆䘥┰ぅ䔥╄ㅆ䘥┲㉅䔥┵䄳⬫〥╄䌳牢┫䘲㌥祅㌥祄㈥ⴷ䬫╴㠲吲⬭╴㤲弫彟彟彟彟彟㈥㌸㈥ ㌥扃⭲㈥╆䔳╅䐳╨䈵╹㜲〥╄䄰䬫╴㠲吲琭㈥┹䐵彟彟彟彟彟╟㠲┴㤲┫䌳牢┫䘲㌥╅䉅㌥⭄╣䘲㔥祂㈥⬷⬭瑋㈥㈸ⵔ╴㤲㔥彄彟彟彟彟╟㠲┵㤲┫䌳牢┫䘲㌥呅㌥╄㠲╹㜲〥䭁㈥┹䔵┱䘲弲彟彟彟彟彟彟彟㈥㘸㈥⬹㌥扃⭲㈥╆䔳䌥⬲䘥 䔥┸㕆┫㑆䔥╅う䔥╃㍆䔥╂ぅ䘥⬵┫䐰䔥┷㑅䔥┵ㅆ䘥⭃䔥⬸䔥┴ぅ䔥╂㕅䔥┵䄳┫䌳牢┫䘲㌥瑅⴫┫䕅䘥┲う䔥┵㝅䔥╅䅅┫㉅䘥┰㕅䔥╃㕅䔥╄㡅┫㙅䔥┸㝅䔥╄㡅┫䅅䔥┲ぅ䔥╄䐰〥 ㈥┸㑆䔥╅㉆䔥╅䑅䔥┰㤲┫䕅䘥⬲䔥╃䕅䔥╃㕅䔥╄㉆䔥⬰╴䐳⬰䔥╆う䔥⬸䔥┵㍅䔥⭅䔥┸㝅䔥╂㍆䘥┷㕅䔥╄㡅䔥⬸䔥┴䕅┫䍅䔥╅䍅䔥┵䑅䘥┲ぅ┫㕅䔥┳䕅┫う䔥┵㍅䔥┸ㅆ䘥┲う䔥┰㙆䔥┸㡅┫䙅䘥 〥╁䍅䔥╄㡅䔥╁䕅䔥⭃䔥┸㝅䔥╂㍆䘥┷㕅䔥╄㡅䘥╆䈳┫䌳牢┫䘲㌥祅⴫┫㝆䔥┰ㅆ䘥┲䕅䘥┲ぅ┫ㅆ䔥┲䕅䔥┱䕅䔥┴䑅䔥╅㍅䔥⭅┫䐰䔥╁㉅䔥┰䑅䘥┲ぅ┫㠲䘥┴䕅䘥┲䕅 ╄ぅ㈥⬹䔥╁ぅ䔥⭁䘥┴㍆䔥╄䅅䘥┶㡅䘥⭆䔥┲う䔥┵䍅䔥┵䑅䔥⬸╴䈳┫䌳牢┫䘲㌥䕅⴫┫䑆䔥╄㕅䘥┰㍅䔥┸䙆┫䐰〥╁䕅䔥┱䕅䔥┴䑅䔥╅㍅䔥⭅䔥╁㉅䔥┰䑅䘥┲ぅ┫䅅䔥┰䅅┫㑆䘥┳䑅䔥╁㙆䔥┸䙆┫㉅䘥┰㕅䔥╃㕅䔥 琫㌥⭂㌥扃⭲㈥╆䔳╹㜲⬭䘥┷ぅ䘥┱㉆䔥╅㉆䔥⬰䔥╁㉅䔥┰䑅䘥┲ぅ┫㉅┫䍅䔥╅䍅䔥┵䑅䘥⬲䔥┵㍅䔥⭅䔥┸㝅〥╁㍆䘥┷㕅䔥╄㡅䘥⭆㈥⬸⭴㌥⭄┰㤲㌥⭂㌥扃⭲ ╆䔳⭋⬭䔥╁䕅䘥╄㑆䘥┴㡅䘥┶㡅䔥┵䑅䘥⬲┫䐰㈥┸䕅䔥┱䕅䔥┷䑅䔥┰㝆䔥┵䑅┫㝅䔥┰㍅䔥╂ぅ䔥┲䑅䔥╅㥅┫ㅅ䘥┳䅅䔥┲䕅䔥⬹䘥┴ぅ䔥╃㡅䔥╂㡅䔥⬸䔥┳㕅䔥╄㡅䔥┰䉅䘥╃䑅䔥╅㍅䔥⭅䘥┴㡅䔥┷㡅䔥╁ぅ┭䑆䔥╁ㅆ䔥╆㕅 㡅䔥╃㕅〥╄䄰䔥┰㉆䔥╅う䔥⬰䔥┰䅅䔥┰㑅䔥┵䍅䔥┸䅅䔥⬰䌥╁ぅ䔥╆㡅䘥┶䉆┫䙃┮䉃┮㤲㈥⭃䔥┲䙅䔥┵う䔥┲䉆䔥⬵䘥┳ㅆ䘥┲ぅ䔥╄䕅䔥┲䉅 ┵䑅䔥╄䉆䔥⬹䔥⬸䔥╆う䔥┸ㅅ䔥╂㡅䔥┶㡂䔥╄䑅䔥⭅〥╁䉆䘥┷㡅䘥┱䉅䔥┵䑅䔥╄䉆䔥⬹䔥┰㉅䘥┲䕅䘥┰䕅䔥⭃䔥⬲䘥┴㕅䔥┲う䔥┰䉅䔥⬵〲㔰䔥⸳┫㠲䔥╄㡅䔥┶㕅⬫〥╄㑅䔥┰䑅┫ㅅ䔥╅䉅䔥┵㕅┫㉆䔥╅㝆䔥╄䉆䔥⬹䔥╃㕅 䕅䔥⬴䘥┰ぅ䘥┱㝆䈥┸㉆䔥⬰䘥╄㉆䔥╅㍅䔥⭅䔥╁䕅䘥╄㑆䘥┴㡅䘥┶㡅䔥┵䑅䘥┲ぅ┫㉅┫䑅䔥╅䙆䔥┱う䔥⬵┲䐰〥㝁┫㍅┮㤲㌥⭂㌥扃⭲㈥╆䔳䔥⭂⬭䔥┴ 䔥┸䑅䔥⬰䘥┸ぅ䔥┳ぅ┫㉅䔥┸䑅䘥┲䕅䔥┲䕅䔥⬹䘥┲う䔥┰㕅䔥╁㉆䔥╅う䔥┸㡅┫㠲䔥┲䕅䔥╂䑅䘥⭂䔥┴㕅┫ㅃ䘥┰䕅䔥┹䉅䘥╆㤲┫㑅䔥┲㡅䔥┶㕅䔥╄㡅䘥⭆䘥┱㉅〥╁ㅅ䔥╅㑅䔥╄䕅䔥┳䕅┫䅅䔥┲ぅ䔥╄㉆䔥⬰䔥╁ぅ 䘥┴㍆䔥╄䅅䘥┶㡅䘥⭆䔥┲う䔥┵䍅䔥┵䑅䔥⬸┫䐰╴䈳┫䌳牢┫䘲㌥桅⴫┫䙅䔥╅ㅆ䘥┲䕅䘥╆䑅䔥╄ぅ䘥⭆䌥╆䉅䔥┰䑅䔥╁ぅ㌥⭂㌥扃⭲㈥╆䔳⭣⬭䔥╆䕅䘥 ㉆䔥╅䙆䔥╄䑅䔥┰䙆┫ㅆ䔥╁䕅䘥┰䕅䘥┱㉆䔥⬸䘥┱㉅䔥┵㉆䔥⸰┫䌳〥╄䄰┫䘲㌥呅⬭䔥╆䕅䔥╂䑅䔥╅㕅┫㉅䘥┰㕅䔥╃䙆┫㙅䔥┸㝅䔥╄㡅┫䅅䔥┲ぅ䔥╄㉆䔥⬰䔥╆う䔥⬸䘥┱㉅䔥╅ㅅ䔥╅㑅䔥╄䕅䔥⭃䔥┴㉅䔥 䔥┵䑅䔥┸㡅┫㉅┫㡃䌥╁㙃┫䙅䘥┰䕅䘥┱㉆䘥┰䄰䔥╄ㅆ䘥┲㉅䔥⬰䔥╅㉆┫䍅䔥╅䍅䔥┵䑅䘥┲ぅ┫㕅䔥┳䕅┫㡅䔥┷䉅䘥┳㝆䔥┵䑅䔥┸䙆⬫〥╄㠲╅䐳票㈥┷㤲䔥┴䕅 䙅䔥╅䉅䔥╄䕅䔥┳䕅┫う䔥┰ㅆ䘥┱㕅䘥╆䑅䔥┸䙆┫㉅┫䑅䔥┵㥅┫㡅䔥⭃䘥┱㉅䔥╅㕅䔥⬹䘥╄䑅䔥┵う䔥┳㡅䔥⬸㈥䔸㌥桄〪㈥⸹┫䌳牢┫䘲㌥╅䌳牢┫䘲〥╄䄰䌥╆う䔥╅㑅䔥╅䉅䔥┶㕅䔥╄㡅䔥⬵䘥┱䉅䔥┵㑅䘥┳㕅䘥⸲㈥ ㈥晆湯╴䔳㌥╃䘲灳湡㌥╅䌳㈥瑆╤䔳㌥╃䘲牴㌥╅䐰㌥╃䘲慴汢╥䔳〥╄㘲扮灳㌥╂䐰㈥┶㌲㔶〰┷䈳┫㘲㈥㘳〵㜰㌥╂㘲㈥㘳〵㜰㌥╂㘲㈥㘳〵㜰㌥╂㘲 㘳〵㜰㌥╂ぁ〥╁ぁ䄥┰ぁ┫㘲㈥㘳〵㜰㌥╂㘲㈥㘳〵㜰㌥╂㘲㈥㘳〵㜰㌥╂㘲㈥㘳〵㜰㌥╂㘲㈥㘳〵㜰㌥╂㘲㈥㘳〵㜰㌥╂㘲㈥㘳〵㜰㌥╂㘲㈥㘳〵㜰㌥╂㘲㈥㘳〵㜰㌥╂㘲㈥㘳〵㜰㌥╂ぃ䘥┱㉆䘥┰䕅䔥╄㕅䘥 ㈥㘳〵㜰㌥⭂㜥⭃㈥┶㌲㔶〰┷䈳䌥╄ぅ䘥┳㝆䔥╄ぅ䘥 䘥┱㕅䘥┲䍆㈥┶㌲ 〰┷䈳┫䌷┫㘲
Naverh
V. M. Usachev
Re: PROSTRANSTVO KAK IDEAL'NAYa KVANTOVAYa ZhIDKOST' 5.02.2008 10:31

(Prodolzhenie, nachalo sm. vyshe.)

Itak, soglasno aksiomatizacii i nachalam teorii ideal'noi kvantovoi zhidkosti (IKZh) prostranstva fundamental'nyi zakon sohraneniya i prevrasheniya energii vyrazhaetsya sistemoi uravnenii

... = mc^2_____________________ (1).

Teper', ishodya iz predstavlenii o prostranstve kak ob'ektivno real'noi kvantovoi zhidkosti s ochen' malym koefficientom vnutrennego treniya n (no ne ravnym nulyu, esli ee absolyutnaya temperatura ne ravna 0), i o fotone kak puzyr'ke para zhidkosti prostranstva s ploshad'yu sfericheskoi poverhnosti s=pd^2, gde p-chislo pi, d-diametr puzyr'ka-fotona, naidem formulu polnoi energii fotona soglasno principam klassicheskoi fiziki. Dlya etogo rassmotrim volnu de Broilya fotona kak slozhnuyu vintovuyu traektoriyu dvizheniya sharika-puzyr'ka s shagom vinta ravnym l i s chastotoi oborotov vokrug osi traektorii ravnoi y v rezul'tate dvuh prostyh dvizhenii ego centra: postupatel'nogo (so skorost'yu sveta parallel'no osi vintovoi traektorii fotona); i vrashatel'nogo s uglovoi skorost'yu w=2py i skorost'yu V=wR perpendikulyarnoi etoi osi (po kasatel'noi k okruzhnosti radiusa R). Togda polnaya kineticheskaya energiya E fotona-puzyr'ka s massoi m i momentom inercii I=mR^2 poluchitsya iz slozheniya kineticheskih energii postupatel'nogo i vrashatel'nogo dvizhenii:

E = 0,5mc^2 + 0,5 Iw^2 = 0,5ms^2 + 0,5 m(Rw)^2 = 0,5 ms^2 + 0,5mV^2.

Zamechaem, chto soglasno formule (1) ms^2=us, a znachit m=us/s^2. Podstaviv sootvetstvuyushie vyrazheniya v formulu polnoi energii fotona, poluchaem:

E=0,5u s(1+ V^2/s^2).

Tak kak, s drugoi storony, polnaya energiya fotona opredelyaetsya formuloi Planka E=hy, to iz uravneniya hy=0,5u s(1+ V^2/s^2) nahodim, chto V=s, tak kak ... s. To est', perpendikulyarnaya (po kasatel'noi k okruzhnosti radiusa R) sostavlyayushaya skorosti fotona otnositel'no osi vintovoi traektorii ego dvizheniya ravna skorosti sveta tak zhe kak i kollinearnaya osi.

Znaya chastotu y fotona v moment izlucheniya, my mozhem opredelit' ne tol'ko ego energiyu po formule E=... massu po formule E=mc^2 na etot moment, no i diametr d obrazuyushego ego puzyr'ka para zhidkosti prostranstva i radius R vintovoi traektorii ego dvizheniya.

Naprimer, tak kak

s =pd^2 = ...,

to diametr puzyr'ka-fotona nahodim po formule

d = (hy /p u)^1/2.

Dlya fotona fioletovogo sveta, chastota kotorogo y =0,76*10^15 gc, nahodim

d = (6,62*10^-27erg.sek*0,76*10^15 gc)^1/2 / (3,1416*0,823*1018erg/sm2)^1/2, to est'

d =1,4 * 10^-15 sm.

Takim obrazom, diametr samogo krupnogo, iz vidimyh cheloveku, fioletovogo fotona sostavlyaet okolo 3% dimetra svobodnyh fundamental'nyh elementarnyh chastic (elektronov i protonov). Radius R=s/2py=6*10^-6sm ego vintovoi traektorii vokrug osi napravleniya dvizheniya primerno v milliard raz bol'she diametra samogo fotona.

Opredeliv energiyu fotona v dannyi moment, my mozhem vychislit' dlya etogo momenta vse ego parametry na osnove principov klassicheskoi fiziki (podtverzhdaya tem samym prorochestvo Diraka o statuse v kachestve palliativa bez vsyakogo budushego obsheprinyatoi traktovki kvantovoi teorii i, v tom chisle, sootnosheniya neopredelennostei).

(Prodolzhenie sleduet.)

Naverh
V. M. Usachev
Re: PROSTRANSTVO KAK IDEAL'NAYa KVANTOVAYa ZhIDKOST' 5.02.2008 10:42

V predydkshem soobshenii redaktor foruma opyat' ne otrazil formulu (1), kotoraya dolzhna imet' takoi vid:

...=mc^2.

(Znacheniya prinyatyh oboznachenii sm. v pervom soobshenii temy.)

MODERATORU foruma.

PROShU UDALITI' ISPORChENNOE SOOBShENIE :
Re: PROSTRANSTVO KAK IDEAL'NAYa KVANTOVAYa ZhIDKOST' 4.02.200812:14

S uvazheniem. Valerii Mihailovich.

Naverh
V. M. Usachev
Re: PROSTRANSTVO KAK IDEAL'NAYa KVANTOVAYa ZhIDKOST' 5.02.2008 19:41

Stranno, na vseh drugih forumah sisteme uravnenii (1) ... i us=mc^2zaprosto otrazhaetsya v vide ...=mc^2.

A zdes' redaktor ostavlyaet tol'ko hvost v vide ...=mc^2.

Kto- ibud' ob'yasnit etot fenomen?

Naverh
V. M. Usachev
Re: PROSTRANSTVO KAK IDEAL'NAYa KVANTOVAYa ZhIDKOST' 7.02.2008 11:08

(Prodolzhenie, nachalo sm. vyshe.)

Do sih por sovremennaya teoreticheskaya fizika schitaet fotony vechno neizmennymi v svobodnom dvizhenii ot istochnika do priemnika, skol'ko by milliardov let eto dvizhenie ni prodolzhalos'. Ponimanie sushnosti prostranstva kak ideal'noi kvantovoi zhidkosti trebuet drugogo predstavleniya o fotonah kak nepreryvno teryayushih svoyu energiyu. Ved', kak by ni byla mala velichina vyazkosti IKZh prostranstva, na gigantskih rasstoyaniyah mezhdu zvezdami galaktik fotony dolzhny zametno teryat' kineticheskuyu energiyu na sovershenie raboty protiv sil ee vnutrennego treniya. Naidem uravnenie zavisimosti energii fotona ot proidennogo puti, uchityvayushee etu poteryu.

Sila treniya f, soprotivlyayushayasya dvizheniyu shara skvoz' zhidkost', opredelyaetsya uravneniem Stoksa:

f = 3pndV, gde: p - chislo pi, n - koefficient vyazkosti zhidkosti, d - diametr shara, V - skorost' ego dvizheniya v zhidkosti. Skorost' dvizheniya puzyr'ka-fotona po vintovoi traektorii vsegda neizmenna. Soglasno pravilu slozheniya skorostei v klassicheskoi fizike ona ravna 2^1/2*s=1,414s, tak kak nami ustanovleno, chto parallel'naya (postupatel'naya) i perpendikulyarnaya (po kasatel'noi k okruzhnosti radiusa R) skorosti fotona otnositel'no osi vintovoi traektorii ravny skorosti sveta s. Diametr fotona, kak ustanovleno tam zhe, opredelyaetsya formuloi d = (hy / pu)^1/2. Znachit, uravnenie dlya nahozhdeniya absolyutnoi velichiny sily treniya pri dvizhenii fotona po vintovoi linii soglasno formule Stoksa prinimaet vid:

f = 3pn(hy/pu)^1/2*2^1/2s.

Sostavim differencial'noe uravnenie beskonechno maloi poteri energii dE fotonom na beskonechno malom otrezke dL ego dvizheniya po vintovoi linii za beskonechno malyi promezhutok vremeni dt. S odnoi storony, velichina poteri energii dE budet ravna rabote sily treniya f na beskonechno malom otrezke dliny vintovoi linii dL=2^1/2c*dt.

To est', dE = f*dL=2^1/2s*3pn(hy/pu)^1/2*2^1/2c*dt=6p^1/2*s^2*n(h/u)^1/2*y^1/2*dt.

S drugoi storony, beskonechno maloe izmenenie velichiny energii fotona mozhet byt' naideno po formule Planka kak

dE = h*dy, gde dy - beskonechno maloe izmenenie chastoty fotona za beskonechno malyi promezhutok vremeni dt . Znachit, my mozhem zapisat' differencial'noe uravnenie vida:

h*dy =6p^1/2*s^2*n(h/u)^1/2*y^1/2*dt , to est'

dt/dy =y^-1/2*(hu)^1/2*(6p^1/2*s^2*n)^-1.

V levoi chasti etogo differencial'nogo uravneniya mnozhitel' (y^-1/2) eto peremennaya chastota fotona . Ostal'nye somnozhiteli

[(hu)^1/2*(6p^1/2*s^2*n)^-1] eto postoyannye velichiny, proizvedenie kotoryh tozhe est' nekotoraya postoyannaya velichina, kotoruyu mozhno oboznachit' simvolom K. Togda my poluchaem differencial'noe uravnenie vida

dt/dy =y^-1/2*K.

Vzyav prosteishii opredelennyi integral na vsem otrezke izmeneniya chastot ot nachal'noi y (v moment izlucheniya fotona) do ravnoi 0 (v moment polnogo rasseyaniya im energii), poluchaem formulu vremeni T zhizni svobodno dvizhushihsya v kosmicheskom prostranstve kvantov shkaly EMV:

T = 2y^1/2*K=y^1/2*2K.

Obratnaya funkcii T budet funkciya: y = KT^2_______________________(2),

gde postoyannaya K=(1/2K)^2=9pn^2*s^4*(hu)^-1.

Formula (2) daet vozmozhnost' vychisleniya umen'sheniya chastoty fotona (to est', galakticheskogo krasnogo smesheniya) esli izvestno rasstoyanie mezhdu istochnikom i priemnikom EMV v kosmose i, naoborot, vychisleniya rasstoyaniya mezhdu istochnikom i priemnikom EMV v kosmose, esli izvestny nachal'naya chastota y v moment izlucheniya i konechnaya chastota y v moment priema.

Deistvitel'no, esli za nachalo otscheta vremeni t = 0 prinimat' moment izlucheniya (rozhdeniya) kvanta s pervonachal'noi chastotoi izlucheniya y , a polnoe vozmozhnoe vremya zhizni etogo kvanta oboznachit' simvolom T; to v lyuboi posleduyushii moment vremeni t (bez ucheta vliyaniya gravitacii i effekta Dopplera) mgnovennye znacheniya ego chastoty y mozhno naiti iz uravneniya

y-y=KT^2 - K(T- t)^2=Kt(2T-t) .

Otsyuda (soglasno formule Planka E=hy) dlya lyubogo kvanta EMV nahodim kak strogo opredelennye funkcii vremeni t ego svobodnogo dvizheniya v IKZh prostranstva:

y=y- Kt(2T- t)_________________________________(3)

E=h[y - Kt(2T-t)]________________________________(4)

l= c/[y - Kt(2T-t)]_______________________________(5)

T=(y/K)^1/2___________________________________.(6)

Chto i trebovalos' dokazat'.

(Prodolzhenie sleduet.)

Naverh
Forumy >> Astronomiya i Internet
Spisok  /  Derevo

Astronet | Nauchnaya set' | GAISh MGU | Poisk po MGU | O proekte | Avtoram

Kommentarii, voprosy? Pishite: info@astronet.ru ili syuda

Rambler's Top100 Yandeks citirovaniya