args[0]=message
args[1]=DB::DB::Message=HASH(0x4a6c290)
Pomogite ili ob'yasnite.
26.02.2008 15:49 | P. V. Artemii
Pishu diplom po morehodnoi astronomii, doshel do chasti gde neobhodimo napisat' samomu programmu dlya vychisleniya polozheniya planet (Venera, Mars, Yupiter, ,Saturn). No voznikla problema. V knige Miusa "Astronomicheskie algoritmy", est' vychisleniya geliocentricheskih shirot, dolgot i radius- vektorov planet. Tam imeetsya takaya formula: L = (L0 + L1*t +L2*t*t +L3*t*t*t +L4*t*t*t*t +L5*t*t*t*t*t)/100 000 000 (rad) V konce imeyutsya prilozheniya gde est' vse eti koefficienty (L0,L1,L2,L3,L4,L5), no ya ne mogu ponyat' po kakomu principu ih vybirat' i dlya chego daetsya formula L0=A*Cos(B+C*t) L0: A B C 1 1.0564 3.6933 89624555.3 2 1803.0 4.1033 5661.3320 3 . . . 3 . . . 4 . . . 5 . . . i t.d Tak ponimayu vse eti koef-ty podstavlyayutsya v formulu L0=A*Cos(B+C*t) t.e.: L0=1.0564 *cos(3.6933+89624555.3*t) +1803.0*cos(4.1033+5661.3320*t) +........ i t.d Eto tak?
- >> Pomogite ili ob'yasnite. (P. V. Artemii, 26.02.2008 15:49, 1.1 KBait, otvetov: 1) Pishu diplom po morehodnoi astronomii, doshel do chasti gde neobhodimo napisat' samomu programmu dlya vychisleniya polozheniya planet (Venera, Mars, Yupiter, ,Saturn). No voznikla problema. V knige Miusa "Astronomicheskie algoritmy", est' vychisleniya geliocentricheskih shirot, dolgot i radius- vektorov planet. Tam imeetsya takaya formula: L = (L0 + L1*t +L2*t*t +L3*t*t*t +L4*t*t*t*t +L5*t*t*t*t*t)/100 000 000 (rad) V konce imeyutsya prilozheniya gde est' vse eti koefficienty (L0,L1,L2,L3,L4,L5), no ya ne mogu ponyat' po kakomu principu ih vybirat' i dlya chego daetsya formula L0=A*Cos(B+C*t) L0: A B C 1 1.0564 3.6933 89624555.3 2 1803.0 4.1033 5661.3320 3 . . . 3 . . . 4 . . . 5 . . . i t.d Tak ponimayu vse eti koef-ty podstavlyayutsya v formulu L0=A*Cos(B+C*t) t.e.: L0=1.0564 *cos(3.6933+89624555.3*t) +1803.0*cos(4.1033+5661.3320*t) +........ i t.d Eto tak?
- Re: Pomogite ili ob'yasnite.
(V. V. Chazov,
27.02.2008 8:10, 600 Bait)
Uvazhaemyi kollega. Vy vse pravil'no napisali. V modelyah dvizheniya planet prisutstvuyut
mnogochleny po vremeni (koefficienty L0,L1,...), no est' takzhe i periodicheskie izmeneniya
dolgoty (nulevogo koefficienta L0), shiroty i rasstoyaniya ot Solnca. Periodicheskie izmeneniya
nado uchityvat' po privodimoi Vami formule.
Osobennogo fizicheskogo smysla v etih chislovyh koefficientah net, osobenno v koefficientah mnogochlenov po stepenyam vremeni. Tak prinyato dlya udobstva vychislenii: formuly prostye, korotkie i obespechivayut prilichnuyu tochnost' na intervalah vremeni 100-200 let.
S poklonom, Vadim.