Rambler's Top100Astronet    
  po tekstam   po forumu  vnutri temy
 

Chernaya dyra

Spisok  /  Derevo
V nachalo ] Pred. | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | Sled.V konec ]
[Novoe soobshenie] Forumy >> Obsuzhdenie publikacii Astroneta
Avtor Soobshenie
I. D. Novikov,  "Fizika Kosmosa", 1986
Chernaya dyra 26.03.2003 19:16

1. Vvedenie 2. Pole tyagoteniya nevrashayusheisya chernoi dyry 3. Pole tyagoteniya vrashayusheisya chernoi dyry 4. Fizicheskie processy v pole tyagoteniya chernoi dyry 1. Vvedenie Chernaya dyra - oblast' prostranstva, v k-roi pole tyagoteniya nastol'ko sil'no, chto vtoraya kosmich. skorost' (parabolicheskaya skorost') dlya nahodyashihsya v etoi oblasti tel dolzhna byla by prevyshat' skorost' sveta, t.e.
>> Prochitat' stat'yu
Naverh
[Citirovat'][Otvetit'][Novoe soobshenie]
A.P. Vasi
Re: Chernaya dyra 13.10.2013 20:11

Eto dolzhen prochitat' kazhdyi,
chto-by on znal i pomnil vechno -
chto vse idei relyativizma vzyaty iz ranee opisannyh
idei storonnikov efira.

-------------------------------------------------------------------------------------------------
http://ether-wind.narod.ru/Martins_2011_Courvoisier

Roberto de Andrade Martins. Poiski efira: popytki Leopol'da Kurvuaz'e izmerit' absolyutnuyu skorost' Solnechnoi sistemy

R. Martins. Searching for the Ether: Leopold Courvoisers Attempts to Measure the Absolute Velocity of the Solar System (PDF)

Roberto De Andrade Martins. Searching for the Ether: Leopold Courvoisers Attempts to Measure the Absolute Velocity of the Solar System

Roberto de Andrade Martins. Poiski efira: popytki Leopol'da Kurvuaz'e izmerit' absolyutnuyu skorost' Solnechnoi sistemy

Introduction

Vvedenie

Leopold Courvoisier

Leopol'd Kurvuaz'e

Courvoisier and relativity

Kurvuaz'e i otnositel'nost'

The method of the moving mirror

Metod dvizhushegosya zerkala

1 {1}DIO, The International Journal of Scientific History www.dioi.org DIO, Mezhdunarodnyi zhurnal nauchnoi istorii www.dioi.org
2 {3}
3 Physics Department, State University of Paraiba (UEPB), Brazil roberto.andrade.martins@gmail.com Fizicheskii fakul'tet Gosudarstvennogo universiteta Paraiba (UEPB), Braziliya roberto.andrade.martins@gmail.com
4

5
6 Leopold Courvoisier (1873-1955) was an observer at the Berlin / Babelsberg astronomical observatory from 1905 up to his retirement in 1938. Leopol'd Kurvuaz'e (1873-1955) byl nablyudatelem v Berlinskoi / Babel'sbergskoi astronomicheskoi observatorii s 1905 goda do svoei otstavki v 1938 godu.
7 Most of his work was traditional astrometrical observation resulting in the publication of several star catalogues. Bol'shinstvo ego rabot byli tradicionnymi astrometricheskimi nablyudeniyami, kotorye v rezul'tate priveli k publikacii ryada zvezdnyh katalogov.
8 A relevant part of his publications was devoted, however, to another subject: the attempt to detect the motion of the solar system through the ether. Znachimaya chast' ego publikacii byla posvyashena, odnako, drugoi teme: popytke obnaruzheniya dvizheniya Solnechnoi sistemy cherez efir.
9

10 Most of Courvoiser's search for measurable effects of the ether was based upon two principles. Bol'shinstvo iz popytok Kurvuaz'e obnaruzhit' izmerimye effekty efira byla osnovana na dvuh principah.
11 According to him, (1) the angles of incidence and reflection of light could be different, relative to the proper reference system of the mirror, if it moved through the ether; and (2) the Lorentz contraction of the Earth due to its motion through the ether produced observable effects relative to the Earths reference system. Po ego slovam, (1) ugly padeniya i otrazheniya sveta mozhet byt' drugim, po otnosheniyu k sobstvennoi sisteme otscheta zerkala, esli ono dvizhetsya cherez efir, i (2) sokrashenie Lorenca dlya Zemli iz-za ee dvizheniya cherez efir proizvodit nablyudaemye effekty po otnosheniyu k sisteme otscheta Zemli.
12 Both principles, of course, violate the principle of relativity. Oba principa, konechno, narushayut princip otnositel'nosti.
13 Courvoisier presented theoretical arguments attempting to show that there should exist second order measurable effects. Kurvuaz'e predstavil teoreticheskie argumenty, pytayas' pokazat', chto dolzhny sushestvovat' izmerimye effekty vtorogo poryadka.
14 He searched for those effects using both astronomical observations and laboratory experiments and claimed that he had measured a velocity of the solar system of about 600 km/s. On iskal eti effekty s pomosh'yu kak astronomicheskih nablyudenii, tak i laboratornyh eksperimentov i utverzhdal, chto on izmeril velichinu skorosti Solnechnoi sistemy primerno 600 km/s.
15 This paper presents a description and analysis of Courvoisers ether researches. Eta stat'ya predstavlyaet soboi opisanie i analiz efirnyh issledovanii Kurvuaz'e.
16

17
18 Leopold Courvoisier was born on 24 January 1873 in Rihen near Basel (Switzerland).1 His father Ludwig Georg Courvoisier was a physician and was in charge of the surgery chair of the University of Basel. Leopol'd Kurvuaz'e rodilsya 24 yanvarya 1873 goda v Rigene bliz Bazelya (Shveicariya). 1 Ego otec Lyudvig Georg Kurvuaz'e byl vrachom i vozglavlyal kafedru hirurgii v universitete Bazelya.
19 Leopold (or Leo, as he was usually called) passed away in the same city where he was born, on 31 December 1955. Leopol'd (ili Leo, kak ego obychno nazyvali) skonchalsya v tom zhe gorode, gde on rodilsya, 31 dekabrya 1955 goda.
20 However, most of his professional life was spent in Germany. Tem ne menee, bol'shuyu chast' svoei professional'noi zhizni on provel v Germanii.
21

22 Courvoisier exhibited an interest for astronomy since he was 15 years old. Kurvuaz'e proyavil interes k astronomii, kogda emu bylo 15 let.
23 In 1891 he began his university studies, first in Basel and later in {4} Strasbourg - at a time when this city belonged to Germany. V 1891 godu on nachal uchebu v universitete, snachala v Bazele, a zatem vStrasburge - v to vremya, kogda etot gorod prinadlezhal Germanii.
24 In 1897 he completed his dissertation, on the absolute height of the pole as observed from Strasbourg (Die absolute Polhöhe von Straßburg). V 1897 godu on zakonchil svoyu dissertaciyu po nablyudaemoi iz Strasburga absolyutnoi vysote polyusa ("Die absolute Polhöhe von Straßburg).
25 The next year he became an assistant observer at the Königstuhl astronomical observatory near Heidelberg, under Karl Wilhelm Valentiner. V sleduyushem godu on stal pomoshnikom nablyudatelya v astronomicheskoi observatorii Kenigshtul' nedaleko ot Haidel'berga, pod rukovodstvom Karla Vil'gel'ma Valentinera.
26 In 1900 he obtained his Doctor degree in Straßburg. V 1900 godu on poluchil doktorskuyu stepen' v Strasburge.
27 From 1905 onward he worked at the Berlin / Babelsberg observatory as an astronomical observer, under the direction of Karl Hermann Struve. S 1905 i dalee on rabotal v Berlinskoi / Babel'sbergskoi observatorii kak astronomicheskii nablyudatel' pod rukovodstvom Karla Germana Struve.
28 In 1913 the Berlin observatory moved to its new site, in Babelsberg,2 and one year later Courvoiser became its chief observer and professor. V 1913 godu Berlinskaya observatoriya pereehala na novoe mesto, v Babel'sberg, 2, a god spustya Kurvuaz'e stal tam glavnym nablyudatelem i professorom.
29 He worked at Babelsberg up to his retirement in 1938, when he was 65 years old. On rabotal v Babel'sberge do svoei otstavki v 1938 godu, v vozraste 65 let.
30 In 1943 he moved to his birthplace, where he kept making observations and publishing papers up to his death. V 1943 godu on pereehal na rodinu, gde on prodolzhal proizvodit' nablyudeniya i publikovat' stat'i do ego smerti.
31 Back to Switzerland, he was the editor of several of Leonhard Euler's astronomical works. V Shveicarii on byl redaktorom neskol'kih astronomicheskih rabot Leonarda Eilera.
32

33 Courvoisiers main astronomical contribution was a large series of routine astrometrical observations and the production of star catalogues. Glavnyi astronomicheskii vklad Kurvuaz'e sostoit v bol'shoi serii rutinnyh astrometricheskih nablyudenii i publikacii zvezdnyh katalogov.
34 Volumes 5, 6 and 7 of Poggendorff's Biographisch-literarisches Handwörterbuch provide references of about 10 large works (astronomical catalogues) besides nearly 100 minor contributions by him.3 However, Courvoisiers work was not restricted to common astrometrical observations. Toma 5, 6 i 7 izdaniya Biographisch literarisches Handwörterbuch Poggendorfa dayut ssylki na primerno 10 krupnyh rabot (astronomicheskih katalogov) Kurvuaz'e, pomimo okolo sta menee znachitel'nyh ego publikacii. 3 Tem ne menee, rabota Kurvuaz'e ne ogranichivaetsya obshimi astrometricheskimi nablyudeniyami.
35 From his tedious measurements there soon came out evidences that he regarded as disproof of the theory of relativity. Iz ego utomitel'nyh izmerenii vskore poyavilis' dokazatel'stva togo, chto on rassmatrivaet kak oproverzhenie teorii otnositel'nosti.
36

37 Courvoisier did not accept the theory of relativity. Kurvuaz'e ne prinyal teoriyu otnositel'nosti.
38 He believed there was an ether, and attempted to measure the absolute velocity of the solar system relative to this medium. On schital, chto sushestvuet efir, i popytalsya izmerit' absolyutnuyu skorost' Solnechnoi sistemy otnositel'no etoi sredy.
39 From 1921 to his death, Courvoisier published a series of over 30 papers where he described the theoretical basis of his search and the several experimental techniques he used in attempting to detect the motion of the Earth relative to the ether. S 1921 goda do svoei smerti, Kurvuaz'e opublikoval seriyu iz bolee chem 30 rabot, v kotoryh on opisal teoreticheskuyu osnovu ego issledovanii i neskol'ko eksperimental'nyh metodov, kotorye on ispol'zoval v popytke obnaruzhit' dvizhenie Zemli otnositel'no efira.
40 Some of his measurements used astronomical observations; other measurements depended on other physical effects (gravitational, etc.). Nekotorye iz ego izmerenii ispol'zovali astronomicheskie nablyudeniya; drugie izmereniya zavisyat ot drugih fizicheskih effektov (gravitacionnye i t.d.).
41 As a result of his observations he claimed that he had measured a velocity of the solar system of about 600 km/s in a direction close to 75 right ascension and +40 declination. V rezul'tate svoih nablyudenii on utverzhdal, chto on izmeril skorost' Solnechnoi sistemy, primerno sostavlyayushuyu 600 km / s v napravlenii, blizkom k 75 pryamogo voshozhdeniya i +40 skloneniya.
42

43
44 {5} .... 1. Leopold Courvoisier (about 30 years old).4 Ris. 1. Leopol'd Kurvuaz'e (v vozraste okolo 30 let). 4
45

46 The papers describing those researches were published in several scientific journals - especially Astronomische Nachrichten, Physikalische Zeitschrift and Zeitschrift für Physik. Stat'i, opisyvayushie eti issledovaniya, byli opublikovany v neskol'kih nauchnyh zhurnalah osobenno v Astronomische Nachrichten, Physikalische Zeitschrift für i Zeitschrift Physik.
47 His work was largely ignored and had a small impact. Ego raboty v znachitel'noi stepeni ignorirovalis' i imeli neznachitel'noe vliyanie.
48 A few authors (e.g. Ernest Esclangon and Dayton Miller) who also claimed they had observed effects due to the ether have cited his works. Neskol'ko avtorov (naprimer, Ernest Esklangon i Deiton Miller), kotorye takzhe utverzhdali, chto oni nablyudali effekty, svyazannye s efirom, ssylalis' na ego proizvedeniya.
49 {6} Historians of science have also neglected those researches,5 although they present the largest set of empirical results that was ever published against the theory of relativity by a professional scientist. Istoriki nauki takzhe prenebregali etimi issledovaniyami, 5, hotya oni predstavlyayut soboi krupneishii nabor empiricheskih rezul'tatov, kotorye byli kogda-libo opublikovany protiv teorii otnositel'nosti professional'nym uchenym.
50 Courvoisier exhibited an outstanding theoretical and experimental skill, and his results can be regarded as one of the strangest puzzles in the history of relativity. Kurvuaz'e pokazyval vydayusheesya teoreticheskoe i eksperimental'noe masterstvo, i ego rezul'taty mozhno rassmatrivat' kak odnu iz samyh strannyh zagadok v istorii teorii otnositel'nosti.
51

52
53 Courvoisier's earliest involvement with relativity was an outcome of his routine measurements of star positions. Samoe pervoe stolknovenie Kurvuaz'e s teoriei otnositel'nosti stalo rezul'tatom ego rutinnyh izmerenii polozhenii zvezd.
54 In the beginning of the twentieth century, Courvoisier had noticed that the right ascension and declination of fixed stars suffered a small influence when they are observed close to the Sun. V nachale HH veka Kurvuaz'e zametil, chto pryamoe voshozhdenie i sklonenie nepodvizhnyh zvezd podverzheno nebol'shomu vliyaniyu, kogda oni nablyudayutsya blizko k Solncu.
55 As this influence had a period of one year, he called it annual refraction. Poskol'ku eto vliyanie imelo period odin god, on nazval ego godovoi refrakciei.
56 His first work on the subject was published in 1905,6 that is, much earlier than the development of the general theory of relativity. Ego pervaya rabota na etu temu byla opublikovana v 1905 godu, 6 to est' namnogo ran'she, chem byla razrabotana obshaya teoriya otnositel'nosti.
57 In 1911, after the publication of Einsteins early thoughts on the gravitational deflection of light rays, Erwin Freundlich recalled that Courvoisier's work had exhibited an effect that was qualitatively similar to the one predicted by Einstein.7 V 1911 godu, posle publikacii rannih myslei Einshteina po gravitacionnomu otkloneniyu luchei sveta, Ervin Freindlih napomnil, chto rabota Kurvuaz'e pokazala effekt, kotoryi kachestvenno pohozh na predskazannyi Einshteinom. 7
58 Courvoisier interpreted the effect he had measured as due to refraction of light by a denser medium around the Sun, not as a consequence of relativity. Kurvuaz'e interpretiroval effekt, kotorye on izmeril, kak sledstvie prelomlenie sveta bolee plotnoi sredoi vokrug Solnca, a ne kak sledstvie teorii otnositel'nosti.
59 It seems that Courvoisiers opposition to Einstein's work grew steadily from this time onward and he became one of the most intransigent supporters of ether theory after the theory of general relativity received strong confirmation (the eclipse measurements), in 1919. Pohozhe, chto oppoziciya Kurvuaz'e k rabotam Einshteina neuklonno rosla s etogo vremeni, i on stal odnim iz samyh nesgibaemyh storonnikov teorii efira posle togo, kak obshaya teoriya otnositel'nosti poluchila sil'noe podtverzhdenie (izmereniya vo vremya zatmeniya) v 1919 godu.
60 Courvoisier's main anti-relativistic work, however, is not directly linked to annual refraction.8 Osnovnye anti-relyativistskih raboty Kurvuaz'e, odnako, neposredstvenno ne svyazany s godovym prelomleniem. 8
61

62 Courvoisier accepted the existence of a static ether, similar to the medium proposed in the early eighteenth century by Augustin Fresnel. Kurvuaz'e priznal sushestvovanie staticheskogo efira, pohozhii na sredu, predlozhennuyu v nachale vosemnadcatogo veka Ogyustenom Frenelem.
63 That theory led to the conclusion that there could be no first-order influence of the motion {7} through the ether upon optical experiments performed in the Earth. Eta teoriya privela k vyvodu, chto ne moglo byt' vliyaniya effektov pervogo poryadka pri dvizhenii cherez efir v opticheskih eksperimentah, provedennyh na Zemle.
64 Besides that, the negative outcome of the Michelson-Morley experiment required an additional hypothesis, and Courvoisier accepted that motion through the ether produced a real contraction of all moving bodies, according to the early explanation proposed by Fitzgerald and Lorentz. Krome togo, otricatel'nyi rezul'tat opyta Maikel'sona treboval dopolnitel'noi gipotezy i Kurvuaz'e predpolozhil, chto dvizhenie cherez efira proizvodit real'noe szhatie vseh podvizhnyh tel, v sootvetstvii s rannimi ob'yasneniyami, predlozhennymi Ficdzheral'dom i Lorencem.
65 According to Lorentz, the principle of relativity would hold exactly for any optical or electromagnetic phenomenon, but Courvoisier did not follow Lorentzs theory in this respect. Po slovam Lorenca, princip otnositel'nosti budet primenim v tochnosti dlya lyubogo opticheskogo ili elektromagnitnye yavleniya, no Kurvuaz'e ne posledoval teorii Lorenca v etom otnoshenii.
66 He directly denied the principle of relativity and attempted to measure the motion of the solar system through the ether using several different techniques. On pryamo otrical princip otnositel'nosti i popytalsya izmerit' dvizhenie Solnechnoi sistemy cherez efir s pomosh'yu razlichnyh metodov.
67

68 In 1921 Courvoisier published his first thoughts on the possibility of measuring the absolute velocity of the Earth through the ether.9 V 1921 godu Kurvuaz'e opublikoval svoi pervye mysli o vozmozhnosti izmereniya absolyutnoi skorosti Zemli otnositel'no efira. 9
69 According to Courvoisiers own declaration, his early calculations concerning the motion of the Earth were an outcome of routine work.10 V sootvetstvii s sobstvennoi deklaraciei Kurvuaz'e, ego rannie raschety o dvizhenii Zemli bylo rezul'tatom rutinnoi raboty. 10
70 In 1920 the Leyden Observatory published the details of a large series of observations of stars close to the North Pole that had been made between 1862 and 1874. V 1920 godu Leidenskaya observatoriya opublikovala podrobnosti iz bol'shoi serii nablyudenii zvezd, raspolozhennyh blizko k Severnomu polyusu, kotorye byli sdelany mezhdu 1862 i 1874 gg.
71 Those measurements used an old method aiming to reduce observational errors: the stars were observed both with the meridian telescope directly pointed to them, and with the telescope pointed to the images of the stars reflected by a mercury mirror. Eti izmereniya ispol'zovali staryi metod, napravlennyi na snizhenie oshibok nablyudenii: zvezdy nablyudalis' kak s pomosh'yu meridiannogo teleskopa, pryamo ukazyvayushego na nih, a takzhe s teleskopom, napravlennym k otrazheniyam zvezd zerkalom iz rtuti.
72 This double assessment allowed corrections for any changes of the local vertical due to geological motions. Eta dvoinaya ocenka pozvolila proizvodit' korrektirovki lyubyh izmenenii mestnoi vertikali za schet geologicheskih dvizhenii.
73 It occurred to Courvoisier that those determinations could be used to measure the speed of the Earth through the ether. Kurvuaz'e prishlo v golovu, chto eti opredeleniya mogut ispol'zovat'sya dlya izmereniya skorosti dvizheniya Zemli cherez efir.
74

75 Courvoisier assumed that the reflection of light by a mirror could undergo some influence of the motion of the mirror through the ether, even when the effect was observed relative to the proper reference system of the mirror. Kurvuaz'e predpolagal, chto otrazhenie sveta ot zerkala mozhet podvergat'sya nekotoromu vliyaniyu ot dvizhenie zerkala cherez efir, dazhe esli effekt nablyudalsya po otnosheniyu k sobstvennoi sisteme otscheta zerkala.
76 Any observable effect should be of the second order in v/c. It would be impossible to detect such a small effect if the speed of the Earth relative to the ether was about 104 c (that is, its orbital velocity), because for usual angle measurements (let us say, 60) a difference of 108 would amount to only 0.002″ an effect that could not be observed. Lyuboi nablyudaemyi effekt dolzhen byt' vtorogo poryadka otnositel'no v / c. Bylo by nevozmozhno obnaruzhit' takoi malen'kii effekt, esli skorost' Zemli otnositel'no efira byl priblizitel'no 10 4 s (to est', ravna ee orbital'noi skorosti), tak kak dlya obychnyh izmerenii ugla (skazhem, 60) raznica 10 8 sostavit lish' 0,002″ effekt, kotoryi ne mog nablyudat'sya.
77 However, Courvoisier assumed that there could exist a much larger speed of the whole solar system relative to the ether, and analyzed the data published by the Leyden Observatory searching for some systematic effect. Tem ne menee, Kurvuaz'e predpolagal, chto mozhet sushestvovat' gorazdo bol'shaya skorost' vsei Solnechnoi sistemy otnositel'no efira, i proanaliziroval dannye, opublikovannye Leidenskoi observatoriei v poiskah sistematicheskogo effekta.
78

79 He computed the difference zz' between the direct zenith distance z and the reflected zenith distance z' of the stars listed in the catalogue, attempting to find a systematic effect that varied in a periodic way with the sidereal time of observations. On vychislil raznicu Z-Z′ mezhdu pryamym zenitnym rasstoyaniem z i otrazhennym zenitnym rasstoyaniem z′ zvezd v kataloge, pytayas' naiti sistematicheskii effekt, kotorye var'irovalsya by periodicheskim obrazom vmeste so zvezdnym vremenem nablyudenii.
80 Using a graphical method, he did find such an effect, and then he submitted the data to quantitative analysis. Ispol'zuya graficheskii metod, on nashel takoi effekt, a zatem predstavil dannye dlya kolichestvennogo analiza.
81 He derived an equation to describe the reflection of light in a moving mirror and {8} determined the relevant parameters from an analysis of the Leyden data, using the method of minimum squares. On poluchil uravnenie dlya opisaniya otrazheniya sveta otnositel'no dvizhushegosya zerkala i opredelil sootvetstvuyushie parametry iz analiza dannyh Leidena, ispol'zuya metod naimen'shih kvadratov.
82 He obtained an effect corresponding to a speed of about 800 km/s in the direction of the Auriga constellation. On poluchil effekt, sootvetstvuyushii skorosti okolo 800 km / s v napravlenii sozvezdiya Voznichego.
83 This speed is, of course, much larger than the orbital speed of the Earth. Eta skorost', konechno, znachitel'no bol'she, chem orbital'naya skorost' Zemli.
84 Courvoisier interpreted it as due to the motion of the whole solar system through the ether. Kurvuaz'e interpretiroval ee kak sledstvie dvizheniya vsei Solnechnoi sistemy cherez efir.
85 A few years later, Courvoisier obtained new data, using the same method (direct versus reflected direction). Neskol'ko let spustya, Kurvuaz'e poluchil novye dannye, ispol'zuya tot zhe metod (sravnenie pryamogo i otrazhennogo napravleniya).
86 Using the vertical circle of the Babelsberg observatory, he made a long series of observations (19211922) that led to results similar to those that had been obtained from the Leyden observations. Ispol'zuya vertikal'nyi krug Babel'sbergskoi observatorii, on vypolnil dlinnyi ryad nablyudenii (19211922), kotorye priveli k rezul'tatam, analogichnym tem, kotorye byli polucheny iz nablyudenii v Leidene.
87

88 After obtaining his first positive result, Courvoisier attempted to find other independent methods of measuring the speed of the Earth (or the solar system) relative to the ether. Posle polucheniya pervogo polozhitel'nogo rezul'tata Kurvuaz'e pytalsya naiti drugie nezavisimye metody izmereniya skorosti Zemli (ili Solnechnoi sistemy) otnositel'no efira.
89 He conjectured that the Lorentz contraction of the Earth and of optical instruments could have some small observable influence on astronomical observations. On predpolozhil, chto sokrashenie Zemli i opticheskih priborov po Lorencu mogli imet' nekotorye nebol'shie vliyanie na nablyudaemye astronomicheskie yavleniya.
90 According to Courvoisier, the motion of the Earth relative to the ether produces a contraction that transforms its spherical shape into an ellipsoid with the smaller axis in the direction of its motion. Soglasno Kurvuaz'e, dvizhenie Zemli otnositel'no efira proizvodit szhatie, kotoroe preobrazuet svoyu sfericheskuyu formu v ellipsoid, men'shaya os' kotorogo nahoditsya v napravlenii ego dvizheniya.
91 The surface of the ellipsoid, at each point, was supposed to be perpendicular to the local gravitational field. Poverhnost' ellipsoida v kazhdoi tochke dolzhna byla byt' perpendikulyarna k mestnomu gravitacionnomu polyu.
92 As the Earth rotates, each place on the surface of the Earth passes through different points of the ellipsoid, and the angle between the axis of the Earth and the local vertical direction should undergo a periodical change. Pri vrashenii Zemli, kazhdoe mesto na poverhnosti Zemli prohodit cherez razlichnye tochki ellipsoida, a ugol mezhdu os'yu Zemli i mestnym vertikal'nym napravleniem, dolzhno podvergat'sya periodicheskomu izmeneniyu.
93

94 Of course, it is impossible to measure the angle between the local vertical and the axis of rotation of the Earth. Konechno, nevozmozhno izmerit' ugol mezhdu mestnoi vertikal'yu i os'yu vrasheniya Zemli.
95 However, since the direction of this axis is fairly constant relative to the fixed stars (for short time periods), it is possible to choose a star very close to the North celestial pole and to measure its distance to the zenith (that is, the local vertical direction). Odnako, tak kak napravlenie etoi osi prakticheski neizmenno otnositel'no nepodvizhnyh zvezd (v techenie korotkih periodoy vremeni), to mozhno vybrat' zvezdu v neposredstvennoi blizosti ot severnogo polyusa zvezdnogo neba i izmerit' ego [uglovoe] rasstoyanie k zenitu (to est', k mestnomu vertikal'nomu napravleniyu).
96 This angle, according to Courvoisier's theory, should undergo a periodical change, as a function of the sidereal time. Etot ugol, soglasno teorii Kurvuaz'e, dolzhen podvergat'sya periodicheskim izmeneniyam v zavisimosti ot zvezdnogo vremeni.
97

98 As a matter of fact, Courvoisier had already measured the position of a star very close to the North pole, in a long series of observations from 1914 to 1917, using the Babelsberg Observatory vertical circle.11 Na samom dele, Kurvuaz'e uzhe izmeryal polozhenie zvezdy, raspolozhennoi ochen' blizko k Severnomu polyusu, v dlinnoi serii nablyudenii s 1914 po 1917 god, ispol'zuya vertikal'nyi krug Babel'sbergskoi observatorii .11
99 Those measurements were very accurate and were evenly distributed as regards the sidereal time of the observations. Eti izmereniya byli ochen' tochnymi i ravnomerno raspredelennymi otnositel'no zvezdnogo vremya nablyudenii.
100 They were therefore suitable for looking for the influence of the Lorentz contraction on astronomical measurements. Poetomu oni podhodili dlya vyyavleniya togo, kak vliyaet sokrashenie Lorenca na astronomicheskie izmereniya.
101

102 As in the former case, Courvoisier first plotted the zenithal distances of the star against sidereal time, and found a regular fluctuation of the angle. Kak i v predydushem sluchae, Kurvuaz'e snachala postroil zenitnye rasstoyaniya zvezdy otnositel'no zvezdnogo vremeni, i obnaruzhil regulyarnye kolebaniya ugla.
103 {9} He then developed an equation to account for the effect, analyzed the data using the minimum square method, and obtained his second measurement of the velocity of the Earth relative to the ether. Zatem on razrabotal uravnenie dlya ucheta effekta, proanalizirovav dannye s ispol'zovaniem metoda naimen'shih kvadratov i poluchil izmerenie skorosti Zemli otnositel'no efira vtorym sposobom.
104 The speed obtained in this case was about 700 km/s, in the direction of the constellation of Perseus (not very far from Auriga). Skorost', poluchennaya v etom sluchae, byla okolo 700 km/s v napravlenii sozvezdiya Perseya (ne ochen' daleko ot sozvezdiya Voznichego).
105 Courvoisier regarded the agreement of those two earliest results as satisfactory, and this led him to further researches. Kurvuaz'e rassmatrival sootvetstvie etih dvuh rannih rezul'tatov kak udovletvoritel'nye, i eto privelo ego k dal'neishim issledovaniyam.
106 There was a delay of 5 years between Courvoisiers first positive results and his next publication on the subject.12 In this period he accumulated a series of positive results by different methods, obtained the equations required for the analysis of his data, and devised new methods for measuring the absolute speed of the Earth. Byla zaderzhka na 5 let mezhdu pervymi polozhitel'nymi rezul'tatami Kurvuaz'e i ego sleduyushei publikaciei na etu temu. 12 V etot period on nakopil ryad polozhitel'nyh rezul'tatov raznymi metodami, poluchil uravneniya, neobhodimye dlya analiza etih dannyh, a takzhe razrabotal novye metody dlya izmereniya absolyutnoi skorosti Zemli.
107 This delay shows that Courvoisier was careful enough to resist publishing preliminary results before he was able to amass a large amount of evidence for his claim. Eta zaderzhka pokazyvaet, chto Kurvuaz'e byl dostatochno ostorozhen, chtoby izbegat' publikacii predvaritel'nyh rezul'tatov, prezhde chem on smog nakopit' bol'shoe kolichestvo dokazatel'stv ego zayavlenii.
108

109
110 Courvoisier derived equations13 that related the relevant measurements to the parameters of the motion of the Earth relative to the ether.14 Kurvuaz'e poluchil uravneniya 13, kotorye otnosyatsya k sootvetstvuyushim izmereniyam parametrov dvizheniya Zemli otnositel'no efira 14
111 The main parameters that appear in his equations (.... 2) are: Osnovnye parametry, kotorye poyavlyayutsya v ego uravneniya (ris. 2) yavlyayutsya sleduyushimi:
112 c = the speed of light relative to the ether = 300,000 km/s s = skorost' sveta otnositel'no efira = 300000 km / s
113 v = speed of the Earth (or the solar system) relative to the ether v = skorost' Zemli (ili Solnechnoi sistemy) otnositel'no efira
114 A = right ascension of the apex of the absolute motion A = pryamoe voshozhdenie apeksa absolyutnoi skorosti
115 D = declination of the apex of the absolute motion D = sklonenie apeksa absolyutnoi dvizheniya
116 α = North local component of v/c α = severnaya lokal'naya sostavlyayushaya v/c
117 β = Zenith local component of v/c β = zenitnaya lokal'naya sostavlyayushaya v/c
118 γ = West local component of v/c γ = zapadnaya lokal'naya sostavlyayushaya v/c
119 ϕ = latitude of the terrestrial observatory φ = shirota nazemnoi observatorii
120 θ = sidereal time of measurement θ = zvezdnoe vremya izmereniya
121

122 A straightforward geometrical analysis shows that the components of v/c are: Prostoi geometricheskoi analiz pokazyvaet, chto komponenty v/c, yavlyayutsya:
123 α = (v/c) [cos ϕ sin D sin ϕ cos D cos (θ A)] (1)
β = (v/c) [sin ϕ sin D + cos ϕ cos D cos (θ A)] (2)
α = (v/c) [cos ϕ sin D sin ϕ cos D cos (θ A)] (1)
β = (v/c) [sin ϕ sin D + cos ϕ cos D cos (θ A)] (2)
124 {10}
γ = (v/c) cos D sin (θ A) (3)
γ = (v/c) cos D sin (θ A) (3)
125
126 .... 2. Ris. 2.
127 This diagram shows the main geometrical parameters used in Courvoisiers theoretical analysis of ether effects. Eta diagramma pokazyvaet osnovnye geometricheskie parametry, ispol'zuemye Kurvuaz'e v teoreticheskom analize effektov efira.
128 The spherical surface represents the Earth, and the observer is at I, and the local directions Z, N, W correspond to Zenith, geographical North and West. Sfericheskaya poverhnost' predstavlyaet Zemlyu, nablyudatel' nahoditsya v I, i mestnye napravleniya Z, N, W sootvetstvuyut zenitu, geografichesomu severu i zapadu.
129 The North Pole is in the direction NP. Severnyi polyus v napravlenii NP.
130 The velocity of the Earth is . Skorost' Zemli sostavlyaet .
131

132 In Courvoisier's first method, as described above, light was reflected by a mirror. V pervom metode Kurvuaz'e, kak opisano vyshe, svet otrazhaetsya ot zerkala.
133 To derive the theoretical effect, it was necessary to study the influence of the motion of the mirror through the ether upon the direction of the reflected ray. Dlya vyvoda teoreticheskogo effekta, bylo neobhodimo izuchit' vliyanie dvizheniya zerkala cherez efir na napravlenie otrazhennogo lucha.
134 Courvoisier made use of the non-relativistic analysis developed by Adolf von Harnack,15 that predicted that the angle of reflection would be different from the angle of incidence, relative to the proper reference system of the mirror (.... 3). Kurvuaz'e ispol'zoval nerelyativistskii analiz, razrabotannyi Adol'fom fon Harnakom, 15 kotoryi predskazal, chto ugol otrazheniya budet otlichat'sya ot ugla padeniya, po otnosheniyu k sobstvennoi sisteme otscheta zerkala (ris. 3).
135 This was one of Courvoisiers main assumptions that was incompatible with the principle of relativity. Eto bylo odno iz osnovnyh predpolozhenii Kurvuaz'e, kotoroe bylo nesovmestimo s principom otnositel'nosti.
136
137 {11} .... 3. Ris. 3.
138 Following a theoretical analysis by Adolf von Harnack, Courvoisier accepted that the angle of reflection of light in a moving mirror is influenced by its motion through the ether, and that there is a second-order effect that can be measured in the reference frame of the mirror. Sleduya teoreticheskomu analizu Adol'fa fon Harnaka, Kurvuaz'e prinyal, chto ugol otrazheniya sveta dlya dvizhushegosya zerkala zavisit ot ego dvizheniya cherez efir, i chto est' effekt vtorogo poryadka, kotoryi mozhet byt' izmeren v sisteme otscheta zerkala.
139

140 Taking into account this principle of the moving mirror, Courvoisier predicted that the angle between the local vertical (zenith) and the direction of observation of a given star would be slightly different from the angle between the zenith and the direction of the star observed using a mercury mirror (.... 4). S uchetom etogo principa dvizhushegosya zerkala, Kurvuaz'e predskazal, chto ugol mezhdu mestnoi vertikal'yu (zenitom) i napravleniem nablyudeniya opredelennoi zvezdy budet neskol'ko otlichat'sya ot ugla mezhdu zenitom i napravleniem na zvezdu, kotoroe nablyudalaetsya s ispol'zovaniem rtutnogo zerkala (ris. 4).
141

142
143 .... 4. Ris. 4.
144 Courvoiser compared the direct measurement of the direction of a star with its direction observed by reflection on a mercury mirror. Kurvuaz'e sravnival pryamoe izmerenie napravleniya na zvezdu s ee napravleniem, kotoroe nablyudaetsya pri otrazhenii ot rtutnogo zerkala.
145 {12}In this specific case, the contraction of the Earth could produce no effect, because both measurements were made relative to the same reference (the local vertical) and the surface of the mercury mirror is, of course, perpendicular to the local vertical, whatever the changes that the gravitational field could undergo due to Lorentz contraction. V dannom konkretnom sluchae, szhatie Zemli ne mozhet proizvodit' nikakogo effekta, potomu chto oba izmereniya proizvodyatsya otnositel'no odnoi i toi zhe tochki otscheta (mestnoi vertikali) i poverhnost'yu zerkala rtuti, konechno, perpendikulyarna k mestnoi vertikali, nezavisimo ot izmeneniya, kotoromu gravitacionnoe pole mozhet podvergat'sya iz-za sokrasheniya Lorenca.
146 The predicted effect was a small systematic difference between the direct and the reflected angles, which should depend on the direction of the observatory relative to the motion of the Earth through the ether. Predskazannyi effekt byl nebol'shim sistematicheskim razlichiem mezhdu pryamym i otrazhennym uglom, kotoroe dolzhno zaviset' ot napravleniya otnositel'nogo dvizheniya Zemli i observatorii cherez efir.
147

148
149 .... 5. Ris. 5.
150 Harnacks diagram for analyzing the reflection of light in a moving mirror. Diagrammy Harnaka dlya analiza otrazheniya sveta v dvizhushemsya zerkale.
151 The initial position of the mirror is S, and after a time δt its position is S'. Nachal'noe polozhenie zerkala S, i cherez nekotoroe vremya δt ego polozhenie S′.
152 AA' is a wave front of the incident light beam, and BB' is a wave front of the reflected beam. AA′ volnovoi front padayushego lucha sveta, i VV′ volnovoi front otrazhennogo lucha.
153

154 Let θ be the angle of incidence and θ' the angle of reflection of a light ray in a moving mirror, measured relative to the ether (.... 5). Pust' θ ugol padeniya i θ′ ugol otrazheniya lucha sveta v dvizhushemsya zerkale, izmerennye otnositel'no efira (ris. 5).
155 According to Harnack's analysis, instead of θ=θ' the following equations would hold: Soglasno analizu Harnaka, podstanovka θ = θ′ privedet k sleduyushim uravneniyam:
156 sin θ' = (1 β2) sin θ / (1 + 2β cos θ + β2) (4) sin θ′ = (1 β2) sin θ / (1 + 2β cos θ + β2) (4)
157 cos θ' = [(1 + β2) cos θ + 2β] / (1 + 2β cos θ + β2) (5) cos θ′ = [(1 + β2) cos θ + 2β] / (1 + 2β cos θ + β2) (5)
158 {13} In those equations, the speed of the mirror is ß=v/c, in the direction perpendicular to the mirror. V etih uravneniyah, skorost' zerkala β = v / s, v napravlenii, perpendikulyarnom k zerkalu.
159 Any motion of the mirror parallel to its surface would have no influence upon the direction of light. Lyuboe dvizhenie zerkala parallel'no ego poverhnosti ne budet imet' nikakogo vliyaniya na napravlenie sveta.
160 In the case of the mercury mirror, the relevant direction if the local vertical, and therefore β, here, has the same general meaning ascribed by Courvoisier to this symbol. V sluchae rtutnogo zerkala, relevantnoe napravlenie mestnaya vertikal' i, sledovatel'no, β zdes' imeet takoi zhe obshii smysl, kotoryi Kurvuaz'e pripisyvaet etomu simvolu.
161 Relative to the proper reference system of the mirror there is an aberration effect, and the angles of incidence (z) and reflection (z') are: Po otnosheniyu k sobstvennoi sisteme otscheta zerkala est' effekt aberracii, a ugly padeniya (z) i otrazheniya (z′) sostavlyayut:
162 z = θ + α cos θ β sin θ (6) z = θ + α cos θ β sin θ (6)
163 z = θ' + α cos θ' + β sin θ' (7) z = θ′ + α cos θ′ + β sin θ′ (7)
164 where α is component of the velocity v/c of the mirror parallel to its surface. gde α yavlyaetsya sostavlyayushei skorosti v / c zerkala, parallel'noi ego poverhnosti.
165 Notice that this is the classical aberration effect. Zametim, chto eto klassicheskii effekt aberracii.
166 A relativistic analysis would lead to a different result. Relyativistskoi analiz privel by k drugomu rezul'tatu.
167

168 The measured effect is the difference between z' and z: Izmerennyi effekt predstavlyaet soboi raznicu mezhdu z′ i z:
169 z' z = (θ' θ) + α (cos θ' cos θ) + β (sin θ' sin θ) (8) z′ z = (θ′ θ) + α (cos θ′ cos θ) + β (sin θ′ sin θ) (8)
170 Taking into account the above equations and making suitable substitutions, one obtains the approximate result: S uchetom privedennyh vyshe uravnenii i prinyatiya sootvetstvuyushih zamen, mozhno poluchit' priblizitel'noe rezul'tat:
171 z' z = 2αβ sin2 z (9) z′ z = 2αβ sin2 z (9)
172 Replacing α and β by their values in Eqs. (1) and (2), one obtains: Zamenyaya α i β na ih znacheniya v formulah (1) i (2), poluchim:
173 z' z = [(v/c)2 sin2 z].[sin 2ϕ.sin2 D + cos 2ϕ.sin 2D. cos (θA) sin 2ϕ.cos2D.cos2(θA)] (10) z′ z = [(v/c)2 sin2 z].[sin 2ϕ.sin2 D + cos 2ϕ.sin 2D.cos (θA) sin 2ϕ.cos2D.cos2(θA)] (10)
174 Notice that this equation contains a constant term and two periodical components with different periods one sidereal day [cos (θA)] and half a sidereal day [cos2 (θA)]. Obratite vnimanie, chto eto uravnenie soderzhit postoyannyi chlen i dva periodicheskih komponenta s razlichnymi periodami odin dlya zvezdnyh sutok, [cos (θA)] i polovinu zvezdnyh sutok [cos2 (θA)].
175 Therefore, from a suitable analysis of the data it should be possible to obtain the speed (v/c), the declination (D) and the right ascension (A) of the motion of the Earth relative to the ether. Takim obrazom, iz sootvetstvuyushego analiza dannyh dolzhna poyavit'sya vozmozhnost' poluchit' skorost' (v/c), sklonenie (D) i pryamoe voshozhdenie (A) dvizheniya Zemli otnositel'no efira.
176


Naverh
[Citirovat'][Otvetit'][Novoe soobshenie]
A.P. Vasi
Re: Chernaya dyra 13.10.2013 20:19

Repetition of the Leyden measurements

Povtorenie leidenskih izmerenii

Courvoisiers device for measuring the absolute speed of the earth

Ustroistvo Kurvuaz'e dlya izmereniya absolyutnoi skorosti Zemli

The double mirror experiments

Eksperimenty s dvoinymi zerkalami

The second method: Lorentz contraction

Vtoroi sposob: sokrashenie Lorenca

Comparison between measurements from different places

Sravnenie izmerenii, sdelannyh v raznyh mestah

Nadir observations

Nablyudeniya nadira

Other methods

Drugie metody

Plumb line motion

Dvizhenie linii otvesa

Bubble level

Puzyr'kovyi uroven'

Comparison between pendulum clocks at different places

Sravnenie mayatnikovyh chasov v raznyh mestah

Local comparison between pendulum clock and chronometer

Mestnoe sravnenie mayatnikovyh chasov i hronometrov

Gravimetric observations

Gravimetricheskie nablyudeniya

Eclipses of Jupiters satellites

Zatmeniya sputnikov Yupitera

Secular aberration of light

Vekovye aberracii sveta

Final comments

Zaklyuchitel'nye kommentarii

177
178 The Leyden measurements had used four stars close to the North Pole. Pri izmereniyah v Leidene ispol'zovalis' chetyre zvezdy, blizkie k Severnomu polyusu.
179 The difference zz' was measured in a series of observations, at the times of upper and lower culmination of each star. Raznica zz′ byla izmerena v serii nablyudenii v momenty verhnei i nizhnei kul'minacii kazhdoi zvezdy.
180 The observed values of the periodical components of zz' amounted to less than 1'', varying from 0.04'' for one of the stars to about 0.5″ for another. Nablyudaemye znacheniya periodicheskih komponent zz′ sostavili menee 1″, s variaciei ot 0,04″ dlya odnoi iz zvezd do 0,5″ dlya drugoi.
181 The error of the measurements was estimated as 0.01″, therefore the effect was regarded as significant. Pogreshnost' izmerenii byla ocenena kak 0,01″, poetomu effekt rascenen kak znachimyi.
182 From the Leyden data Courvoisier obtained the results: Iz Leidenskih dannyh Kurvuaz'e byli polucheny rezul'taty:
183 A = 104 21; D = +39 27; v = 810 215 km/s A = 104 21; D = +39 27; v = 810 215 km/s
184 {14} The estimated error of the speed amounted to about 25%. Ocenivaemaya oshibka skorosti sostavila okolo 25%.
185 The errors of the right ascension and declination amounted to about 1/15 of the full circle. Oshibki pryamogo voshozhdeniya i skloneniya sostavili okolo 1/15 polnogo kruga.
186 Between 1921 and 1922 Courvoisier repeated the Leyden measurements, but with a slight change of method. Mezhdu 1921 i 1922 gg. Kurvuaz'e povtoril leidenskie izmereniya, no s nebol'shim izmeneniem metoda.
187 Instead of a meridian circle he used a Wanschaff vertical circle that enabled him to make measurements of the stars at any time during the night. Vmesto meridiannogo kruga on ispol'zoval vertikal'nyi krug Vanshaffa, kotoryi pozvolil emu proizvesti izmereniya zvezd v lyuboe vremya v techenie nochi.
188 Therefore his measurements were not limited to two sidereal times for each star. Poetomu ego izmereniya ne byli ogranicheny dvumya momentami zvezdnogo vremeni dlya kazhdoi zvezdy.
189

190 From 4 June to 14 December 1921 he made a series of 142 measurements of the polar star BD +89.3, and from 18 March to 23 May 1922 he made further 64 determinations of zz'. S 4 iyunya po 14 dekabrya 1921 godu on proizvel seriyu iz 142 izmerenii Polyarnoi zvezdy BD 89,3 , a s 18 marta po 23 maya 1922 g. on vypolnil dal'neishie 64 opredeleniya zz′.
191 From those measurements Courvoisier obtained: Iz etih izmerenii Kurvuaz'e poluchil:
192 A = 93 7; D = +27 12; v = 652 71 km/s A = 93 7; D = +27 12; v = 652 71 km/s
193 The estimated relative error of the speed was reduced to about 10% and the errors of the right ascension and declination amounted to less than 1/30 of the full circle. Raschetnaya otnositel'naya oshibka opredeleniya skorosti snizilas' do okolo 10%, a oshibki opredeleniya pryamogo voshozhdeniya i skloneniya sostavili menee chem 1/30 polnogo kruga.
194 Courvoisiers work called the attention of a French astronomer, the director of the Strasbourg observatory, Ernest Esclangon, who repeated those measurements.18 Rabota Kurvuaz'e obratila na sebya vnimanie francuzskogo astronoma, direktora Strasburgskoi observatorii, Ernesta Esklangona, kotoryi povtoril eti izmereniya. 18
195 He confirmed the existence of a systematic effect of the same order of magnitude, and computed the values of A=69 and D=44. On podtverdil sushestvovanie sistematicheskogo effekta togo zhe poryadka velichiny, i vychislil znacheniya A=69 i D=44.
196 Esclangon did not publish the estimated errors of his evaluation, nor the estimated speed of the Earth. Esklangon ne opublikoval ni raschetnye oshibki ego ocenki, ni ozhidaemuyu skorost' Zemli.
197

198 Other evaluations were later obtained by Courvoisier using measurements made at München (19301931) and Breslau (19331935), with the following results: Drugie dannye byli pozdnee polucheny Kurvuaz'e s ispol'zovaniem izmerenii, provedennyh v Myunhene (1930-1931) i Breslavle (1933-1935), so sleduyushimi rezul'tatami:
199
München Breslau (1) Breslau (2)
A = 73 6 A = 92 12 A = 80 4
D = +40 (estimated)19 D = +44 25 D = +30 10
v = 889 93 km/s v = 927 200 km/s v = 700 60 km/s
Myunhen Breslavl' (1) Breslavl' (2)
A = 73 6 A = 92 12 A = 80 4
D = +40 (ocenka) 19 D = +44 25 D = +30 10
V = 889 93 km / s V = 927 200 km / s V = 700 60 km / s
200 The results obtained in the second Breslau series presented the smallest errors. Rezul'taty, poluchennye vo vtoroi serii Breslavlya, predstavleny naimen'shimi oshibkami.
201

202 In 1945, after his retirement, Courvoisier made a final series of observations from Basel. V 1945 godu, posle vyhoda na pensiyu, Kurvuaz'e vypolnil okonchatel'nye serii nablyudenii v Bazele.
203 He obtained the following results: On poluchil sleduyushie rezul'taty:
204 A = 60 14; D = +40 (estimated); v = 656 157 km/s A = 60 14 , D = +40 (ocenka), v = 656 157 km / s
205 {15} If we compare all the series of measurements, we notice that the right ascension varied between 60 and 104 (more than the estimated errors); the declination varied between 39 and 44 (within the estimated errors);20 and the speed varied between 652 and 927 km/s (within estimated errors). Esli sravnit' vse serii izmerenii, my zamechaem, chto pryamoe voshozhdenie var'irovalas' mezhdu 60 i 104 (bolee chem raschetnaya oshibka); sklonenie ot 39 do 44 (v predelah raschetnyh oshibok), 20 i skorost' ot 652 do 927 km / s (v predelah raschetnyh oshibok).
206 Notice that it is very hard to explain away Courvoisier's results as due to instrument errors, because the observed effect varied with periods of one sidereal day and half sidereal day. Obratite vnimanie, chto ochen' trudno ob'yasnit' rezul'taty Kurvuaz'e instrumental'nymi pogreshnostyami, tak kak nablyudaemyi effekt izmenyaetsya s periodami v odni zvezdnye sutki i polovinu zvezdnyh sutok.
207 All common causes of error (gravity changes, temperature changes, etc.) would vary with periods of one (or half) solar day. Vse rasprostranennye prichiny oshibok (izmeneniya sily tyazhesti, izmeneniya temperatury i t.d.) dolzhny menyat'sya s periodom v odni (ili polovinu) solnechnyh sutok.
208 Tidal influences due to the Moon would have periods that could also be easily distinguished from the effects predicted by Courvoisier. Prilivnye vliyaniya Luny budut imet' periody, kotorye takzhe mogut byt' legko otlichimy ot effektov, predskazannyh Kurvuaz'e.
209 Besides that, the data used by Courvoisier was obtained with different instruments at different places, and covered a time span of 80 years. Krome togo, dannye, ispol'zuemye Kurvuaz'e, byli polucheny s pomosh'yu razlichnyh instrumentov v raznyh mestah, i ohvatyvali promezhutok vremeni v 80 let.
210 The results presented by Courvoisier are therefore highly impressive and cannot be dismissed lightly. Rezul'taty, predstavlennye Kurvuaz'e, sledovatel'no, ves'ma vpechatlyaet i ne mogut byt' legko otvergnuty.
211

212
213 In the first method used by Courvoisier, the stars work as mere point-like light sources. V pervom metode, kotoryi ispol'zoval Kurvuaz'e, zvezdy ispol'zuyutsya kak prostye tochechnye istochniki sveta.
214 There is nothing peculiarly astronomical in the observed effect because, according to Courvoisier's theory, this was ascribed to the principle of the moving mirror. Tam net nichego specificheski astronomicheskogo v nablyudaemom effekte, potomu chto, soglasno teorii Kurvuaz'e, eto bylo opisano kak princip dvizhushegosya zerkala.
215 Therefore, similar effects should occur for terrestrial light sources, too. Takim obrazom, podobnye effekty dolzhny takzhe voznikat' i dlya nazemnyh istochnikov sveta.
216

217 Accordingly, Courvoisier was led to build a new instrument: an optical device for measuring absolute motion (.... 6).21 He used two small telescopes that were placed in an underground room where the temperature was fairly constant. Sootvetstvenno, Kurvuaz'e eto privelo k sozdaniyu novogo instrumenta:. opticheskogo ustroistva dlya izmereniya absolyutnogo dvizheniya (ris. 6) 21 On ispol'zoval dva nebol'shih teleskopa, kotorye byli razmesheny v podzemnom pomeshenii, gde temperatura byla dovol'no postoyannoi.
218 Both telescopes pointed obliquely (zenithal distance = 60) to a mercury mirror that was placed between them. Oba teleskopa byli nakloneny (zenitnoe rasstoyanie = 60 ) k rtutnomu zerkalu, kotoroe bylo pomesheno mezhdu nimi.
219 They were mounted in a vertical plane in the East-West direction. Oni byli ustanovleny v vertikal'noi ploskosti v napravlenii Vostok-Zapad.
220 One of the telescopes had a small electric light close to its reticule, and this was the light source that was observed from the second telescope. Odin iz teleskopov imel nebol'shoe elektricheskoe osveshenie vblizi ot ee kresta vizirnyh nitei, i eto bylo istochnikom sveta, kotoryi nablyudalsya vo vtoroi teleskop.
221 Both telescopes were first adjusted so that it was possible to see the reflection of the illuminated reticule of the first telescope from the second telescope. Oba teleskopa snachala byli nastroeny takim obrazom, chtoby mozhno bylo uvidet' otrazhenie osveshennoi setki iz pervoi truby ot vtorogo teleskopa.
222 They were then fastened in those directions. Zatem oni byli zakrepleny v etih napravleniyah.
223 Of course, the angles of the telescopes with the local vertical were sensibly equal. Konechno, ugly teleskopov s mestnoi vertikali byli ochevidno ravny.
224 The experiment did not try to measure any difference between those angles. Eksperiment ne pytalsya izmerit' kakoe-libo razlichie mezhdu etimi uglami.
225 It attempted to detect small periodical changes of the position of the image of the first telescope reticule as observed from the second one. On byl prednaznachen dlya obnaruzheniya nebol'shih periodicheskih izmenenii v polozhenii kresta vizirnyh nitei pervogo teleskopa, pri ih nablyudenii iz vtorogo teleskopa.
226 The apparent motion of {16} the reticule was measured with the aid of the ocular micrometer of the second telescope. Vidimoe dvizhenie perekrestiya bylo izmereno s pomosh'yu okulyarnogo mikrometra vtorogo teleskopa.
227

228 Using this device, Courvoisier made two series of observations in 1926 and 1927. S pomosh'yu etogo ustroistva Kurvuaz'e vypolnil dve serii nablyudenii v 1926 i 1927 godah.
229 Afterwards, he had a special instrument built for this purpose, and made a third series of observations in 1932. Vposledstvii, on postroil special'nyi instrument dlya etoi celi, i vypolnil tret'yu seriyu nablyudenii v 1932 godu.
230

231 In his first experiments the telescopes were placed in a vertical plane in the East-West direction. V ego pervyh eksperimentah teleskopy byli razmesheny v vertikal'noi ploskosti v napravlenii vostok-zapad.
232 In 1926 and 1928 Courvoisier built two new instruments that could be rotated. V 1926 i 1928 godah Kurvuaz'e postroil dva novyh instrumenta, kotorye mogli vrashat'sya.
233 He expected that this would improve his measurements. On ozhidal, chto eto budet sposobstvovat' uluchsheniyu ego izmerenii.
234 However, he found out that it was impossible to compare measurements when the device was rotated, due to mechanical problems, and the instruments could only be effectively used in a fixed position. Tem ne menee, on vyyasnil, chto okazalos' nevozmozhnym sravnivat' izmereniya, kogda ustroistvo povorachivalos', iz-za mehanicheskih problem, i instrumenty mogut byt' effektivno ispol'zovany tol'ko v fiksirovannom polozhenii.
235

236 The equation used to compute the effect was similar to that used in the case of the observation of stars, but instead of the North component of the speed, it was necessary to take into account the West component. Uravnenie, ispol'zuemoe dlya vychisleniya effekta, byl analogichno tomu, kotoroe ispol'zovalos' v sluchae nablyudeniya zvezd, no vmesto severnoi komponenty skorosti, bylo neobhodimo prinimat' vo vnimanie zapadnuyu komponentu.
237 As in the former case, the resulting equation has a constant term plus variable components with periods of one sidereal day and half sidereal day. Kak i v predydushem sluchae, rezul'tiruyushee uravnenie imeet postoyannyi chlen plyus peremennye sostavlyayushie s periodami v odni zvezdnye sutki i polovinu zvezdnyh sutok.
238

239
240 .... 6. Courvoisiers double telescope apparatus for measuring the motion of the Earth through the ether. Ris. 6. Dvoinoi teleskop Kurvuaz'e apparat dlya izmereniya dvizheniya Zemli cherez efir.
241

242 {17} Table 1. Measurements made by Courvoisier in 1926 with the double telescope instrument. Tablica 1. Izmereniya, vypolnennye v 1926 godu Kurvuaz'e s instrumentom v vide dvoinogo teleskopa.
243
First series:
Sidereal time 0 (z z') + constant number of measurements
0.32 h 0.08″ 21
1.23 h + 0.04″ 64
2.45 h + 0.07″ 14
3.31 h 0.38″ 56
4.28 h 0.38″ 14
5.28 h 0.57″ 68
7.37 h 0.58″ 55
9.29 h 0.57″ 64
11.24 h 0.24″ 30
12.73 h 0.04″ 20
21.91 h + 0.21″ 38
23.32 h + 0.08″ 45
Pervaya seriya:
Zvezdnoe vremya θ (z z′) + konstanta Kolichestvo izmerenii
0,32 ch 0.08 ″ 21
1,23 ch + 0.04 ″ 64
2,45 ch + 0,07 ″ 14
3,31 ch 0,38 ″ 56
4,28 ch 0,38 ″ 14
5,28 ch 0,57 ″ 68
7,37 ch 0,58 ″ 55
9,29 ch 0,57 ″ 64
11,24 ch 0,24 ″ +30
12,73 ch 0,04 ″ 20
21,91 ch + 0,21 ″ 38
23,32 ch + 0,08 ″ 45
244

245 Table 2. Measurements made by Courvoisier in 1927 with the double telescope instrument. Tablica 2. Izmereniya, vypolnennye v 1927 godu Kurvuaz'e s instrumentom v vide dvoinogo teleskopa.
246
Second series:
Sidereal time 0 (z z') + constant number of measurements
2.9 h + 1.54″ 4
7.3 h + 0.28″ 6
8.2 h + 0.28″ 7
9.1 h 0.01″ 7
10.1 h + 0.23″ 6
11.4 h + 0.56″ 5
12.3 h + 0.60″ 5
13.7 h + 0.52″ 7
15.5 h + 0.84″ 6
17.9 h + 0.88″ 7
19.9 h + 0.80″ 7
Vtoraya seriya:
Zvezdnoe vremya θ (z z′) + konstanta Kolichestvo izmerenii
2,9 ch + 1.54 4
7,3 ch + 0,28″ 6
8,2 ch + 0,28″ 7
9,1 ch 0,01″ 7
10.1 ch + 0,23″ 6
11.4 ch + 0,56″ 5
12.3 ch + 0,60″ 5
13,7 ch + 0,52″ 7
15,5 ch + 0,84″ 6
17,9 ch + 0,88″ 7
19,9 ch + 0,80″ 7
247

248 {18} The first series comprised 489 observations, and the second series only 67 observations. Pervaya seriya sostavila 489 nablyudenii, a vtoraya tol'ko 67 serii nablyudenii.
249 From the first series, Courvoisier computed the following values: Iz pervoi serii Kurvuaz'e vychislil sleduyushie znacheniya:
250 A = 70 6; D = +33 11; v = 493 54 km/s A = 70 6; D = +33 11; v = 493 54 km/s
251 From the second series, he obtained the results: Iz vtoroi serii on poluchil takie rezul'taty:
252 A = 22 6; D = +72 11; v = 606 45 km/s A = 22 6; D = +72 11; v = 606 45 km/s
253 Of course, the results obtained from the first series of measurements seemed more reliable than those from the second series, and they exhibited a closer agreement with former measurements. Konechno, rezul'taty, poluchennye v pervoi serii izmerenii predstavlyayutsya bolee nadezhnym, chem ot vtorogo serii, i oni pokazali bolee blizkoe sootvetstvie s prezhnimi izmereniyami.
254

255 Notice that, although those measurements attempted to detect the same kind of effects as the astronomical observations - that is, a difference between angle of incidence and angle of reflection in a moving mirror - the star observations used the North-South direction, and the cave experiments employed the East-West direction. Obratite vnimanie, chto, hotya eti izmereniya delali popytku obnaruzhit' takie zhe posledstviya, chto i astronomicheskie nablyudeniya to est', raznicu mezhdu uglom padeniya i uglom otrazheniya v dvizhushemsya zerkale zvezdnye nablyudeniya ispol'zovali napravlenie sever-yug, a eksperimenty v zakrytom pomeshenii ispol'zovali napravlenie vostok-zapad.
256 The equations were different, and nevertheless Courvoisier obtained a nice agreement between the new device and the former results. Uravneniya byli raznye, i tem ne menee Kurvuaz'e poluchil horoshee soglasie mezhdu novym ustroistvom i prezhnimi rezul'tatami.
257

258
259 In 1928 Courvoisier built another device to measure the speed of the Earth using the principle of the moving mirror. V 1928 g. Kurvuaz'e postroil drugoe ustroistvo dlya izmereniya skorosti Zemli s ispol'zovaniem principa dvizhushegosya zerkala.
260 Instead of using two telescopes, he used a single telescope, with two perpendicular mirrors in front of its objective (.... 7). Vmesto primeneniya dvuh teleskopov, on ispol'zoval odin teleskop, s dvumya perpendikulyarnymi zerkalami pered ego ob'ektivom (ris. 7).
261 The body of the telescope was placed in a horizontal position. Truba teleskopa byla razmeshena v gorizontal'nom polozhenii.
262 The mirrors were adjusted so that it was possible to observe the reflected image of the thread micrometer of the telescope in close coincidence with the real micrometer thread. Zerkala byli otregulirovany takim obrazom, chtoby mozhno bylo nablyudat' otrazhennoe izobrazhenie niti mikrometra teleskopa v blizkom sovpadenii s real'noi nit'yu mikrometra.
263 He predicted that the relative position of the image and the thread should undergo periodic fluctuations, and computed the predicted effect. On predskazal, chto otnositel'noe polozhenie izobrazheniya i niti dolzhno podvergat'sya periodicheskim kolebaniyam, i vychislil predskazannyi effekt.
264

265 From April to June 1928 Courvoisier obtained a series of 53 measurements, both in the North-South and in the East-West directions, and he computed the following values: S aprelya po iyun' 1928 g. Kurvuaz'e byla poluchena seriya iz 53 izmerenii, kak v napravlenii sever-yug, tak i vostok-zapad, i on vychislil sleduyushie znacheniya:
266 A = 74 1; D = +36 1; v = 496 10 km/s A = 74 1; D = +36 1; v = 496 10 km/s
267 The first series of measurements was made from 31 July and 6 August 1926, with observations spanning between 3 and 20 o'clock sidereal time; the second one, from 28 February to 29 May 1927, with observations covering the period from 21 to 13 o'clock sidereal time. Pervaya seriya izmerenii byla provedena s 31 iyulya i 6 avgusta 1926 goda, s nablyudeniyami, ohvatyvayushimi ot 3 do 20 chasov zvezdnogo vremeni; vtoraya seriya s 28 fevralya po 29 maya 1927 goda, s nablyudeniyami za period s 21 do 13 chasov zvezdnogo vremeni.
268 Both series comprised more than 500 measurements. Obe serii sostavili bolee 500 izmerenii.
269 Tables 1 and 2 shows the mean results obtained by Courvoisier for each sidereal time: V tablicah 1 i 2 pokazany srednie rezul'taty, poluchennye Kurvuaz'e dlya kazhdogo perioda zvezdnogo vremeni:
270

271
272 .... 7. Courvoisiers coupled mirror device for measuring the motion of the Earth through the ether. Ris. 7. Ustroistvo Kurvuaz'e so svyazannymi zerkalami dlya izmereniya dvizheniya Zemli otnositel'no efira.
273

274 {19} Courvoisiers new experiment was probably suggested by a similar arrangement that had been used by Esclangon in 1927.23 Novyi eksperiment Kurvuaz'e byl, veroyatno, podskazan podobnym ustroistvom, kotoroe bylo ispol'zovano Esklangonom v 1927 godu. 23
275 The French astronomer used two mirrors, but light underwent three reflections (.... 8). Francuzskii astronom ispol'zoval dva zerkala, no svet ispytyval tri otrazheniya (ris. 8).
276 The maximum effect occurred at 3 h or 15 h sidereal time, corresponding to A = 45 or 225. Maksimal'nyi effekt poyavlyalsya dlya 3 ch ili 15 ch zvezdnogo vremeni, chto sootvetstvuet A = 45 ili 225 .
277 Esclangon did not compute the speed of the Earth through the ether indeed, he did not even provide a definite interpretation of the phenomenon. Esklangon ne vychislyal skorost' Zemli cherez efir bolee togo, on dazhe ne obespechivayut opredelennuyu interpretaciyu yavleniya.
278
279 .... 8. Esclangons coupled mirror device for measuring the motion of the Earth through the ether (a), and a graphical representation of his results (b), showing the observed angular fluctuations as a function of sidereal time. Ris. 8. Ustroistvo Esklangona so svyazannymi zerkalami dlya izmereniya dvizheniya Zemli cherez efir (a) i graficheskoe predstavlenie ego rezul'tatov (b), pokazyvayushih nablyudaemye uglovye kolebaniya v zavisimosti ot zvezdnogo vremeni.
280

281
282 As described above, Courvoisier's second attempt to measure the absolute velocity of the Earth was grounded upon his analysis of the Lorentz contraction of the Earth (.... 9). Kak opisano vyshe, vtoraya popytka Kurvuaz'e izmerit' absolyutnuyu skorost' Zemli byla osnovana na ego analize sokrasheniya Lorenca dlya Zemli (ris. 9).
283 In this case, Courvoisier supposed that the local vertical would undergo a change, due to the Lorentz contraction of the Earth, and this change would be observable as a periodical fluctuation in the angle between the North Pole and the zenith, as a function of the sidereal time. V etom sluchae Kurvuaz'e predpolozhil, chto mestnaya vertikal' preterpit izmeneniya v svyazi s sokrasheniem Lorenca dlya Zemli, i eto izmenenie budet nablyudat'sya kak periodicheskoe kolebanie ugla mezhdu Severnym polyusom i zenitom, kak funkciya zvezdnoe vremya.
284

285 Courvoisier's theoretical analysis led him to predict that the variation of the zenithal distance Δz of a star close to the North Pole would obey the approximate relation: Teoreticheskii analiz Kurvuaz'e privel ego k predskazaniyu, chto izmenenie zenitnogo rasstoyaniya Δz blizosti zvezdy k Severnomu polyusu dolzhny podchinyat'sya priblizhennomu sootnosheniyu:
286 Δz = 1/2 αβ (11) Δz = 1/2 αβ (11)
287 {20} There are some special observational difficulties in this second method. Est' neskol'ko specificheskih trudnostei v nablyudenii dlya etogo vtorogo sposoba.
288 If it were possible to observe a star laying exactly in the direction of the celestial North Pole, the observation would be quite simple. Esli by mozhno bylo nablyudat' zvezdu, lezhashuyu tochno v napravlenii nebesnogo Severnogo polyusa, nablyudenie okazhetsya dovol'no prostym.
289 However, if the star is not exactly in the direction of the pole, its zenithal distance will depend on the sidereal time of the observation. Odnako, esli zvezda nahoditsya ne tochno v napravlenii polyusa, ee zenitnoe rasstoyanie budet zaviset' ot zvezdnogo vremeni nablyudeniya.
290 This classical large effect would have, therefore, a period of one sidereal day and would interfere with any attempt to measure any influence due to the motion through the ether with a period of one sidereal day. Etot klassicheskii bol'shoi effekt imeet, takim obrazom, period odni zvezdnye sutki, i on dolzhen pomeshat' lyuboi popytke izmerit' kakoe-libo vliyanie za schet dvizheniya cherez efir s periodom odin zvezdnyi den'.
291 Other interfering effects, such as temperature changes, vary with a period of about one solar day, and they are very large and irregular. Drugie meshayushie effekty, takie kak izmeneniya temperatury, izmenyayutsya s periodom priblizitel'no odin solnechnyi den', i oni ochen' bol'shie i neregulyarnye.
292 For those reasons, Courvoisier gave up the attempt of finding the amplitude of the sidereal day effect, and only computed the half sidereal day effect. Po etim prichinam, Kurvuaz'e ostavil popytku nahozhdeniya amplitudy effekta za zvezdnye sutki, i tol'ko vychislil effekt, svyazannyi s polovinoi zvezdnyh sutok.
293 It was impossible, therefore, to find all parameters, and he assumed a value of 40 for the declination, and computed the speed and right ascension of the motion of the Earth relative to the ether. Bylo nevozmozhno, takim obrazom, naiti vse parametry, i on predpolozhil znachenie 40 dlya skloneniya, i vychislil skorost' i pryamoe voshozhdenie dvizheniya Zemli otnositel'no efira.
294 Dropping out the component corresponding to the period of one sidereal day, he obtained the following equation: Otbrosiv komponentu, sootvetstvuyushuyu periodu v odin zvezdnyi den', on poluchil sleduyushee uravnenie:
295 Δz = (1/4)(v/c)2.sin 2ϕ (const. Δz = (1/4)(v/c)2.sin 2ϕ (const.
296 cos2D.cos2(θA)] (12) cos2D.cos2(θA)] (12)
297
298 {21} .... 9. Ris. 9.
299 According to Courvoisier, the Lorentz contraction of the Earth and of optical instruments could have a small observable influence on astronomical observations and terrestrial experiments. Soglasno Kurvuaz'e, sokrashenie Lorenca dlya Zemli i opticheskih priborov mozhet imet' nebol'shoe vliyanie na astronomicheskie nablyudeniya i nazemnye eksperimenty.
300 Using the data he had already obtained from 1914 to 1917, and combining those results with other measurements he made in 19211922 and 1925-1926, with the same instrument, Courvoisier obtained the following result: Ispol'zuya dannye, kotorye on uzhe poluchil s 1914 po 1917 gg. i ob'ediniv eti rezul'taty s drugimi izmereniyami, kotorye on sdelal v 19211922 i 19251926 gg. s tem zhe instrumentom, Kurvuaz'e poluchil sleduyushii rezul'tat:
301 A = 74 3; [D = +40]; v = 587 48 km/s A = 74 3; [D = +40]; v = 587 48 km/s
302 He also analyzed measurements that had been obtained in routine observations at the Paris observatory, in the period 1899-1901. All those series of observations exhibited similar variations with a period of 12 sidereal hours. On takzhe proanaliziroval izmereniya, kotorye byli polucheny v regulyarnyh nablyudeniyah v Parizhskoi observatorii v period 18991901 gg. Vse eti serii nablyudenii pokazali pohozhie variacii s periodom 12 zvezdnyh chasov.
303 Assuming a value of 40 for the declination, he obtained the following results: Predpolozhiv znachenie 40 dlya skloneniya, on poluchil sleduyushie rezul'taty:
304 A = 70 11; [D = +40]; v = 810 166 km/s A = 70 11; [D = +40]; v = 810 166 km/s
305 Afterwards Courvoisier also computed the motion of the Earth using measurements from Breslau (19231925 and 19331935) and from München (1927-1931). Vposledstvii Kurvuaz'e takzhe vychislil dvizhenie Zemli po izmereniyam v Breslavle (19231925 i 19331935) i v Myunhene (19271931).
306 Taking into account all the observations, he obtained the following final result: Prinimaya vo vnimanie vse nablyudeniya, on poluchil sleduyushii okonchatel'nyi rezul'tat:
307 A = 65 10; [D = +40]; v = 574 97 km/s A = 65 10; [D = +40]; v = 574 97 km/s
308 {22}
309 The effects predicted by Courvoisier as a consequence of the Lorentz contraction of the Earth should depend on the latitude of the observatory. Effekty, predskazannye Kurvuaz'e kak sledstvie sokrashenie Lorenca dlya Zemli, dolzhny zaviset' ot shiroty observatorii.
310 For that reason, if the same set of stars was observed from two observatories at very different latitudes, there should exist a systematic difference between the measured declinations of the stars, as a function of sidereal time. Po etoi prichine, esli tot zhe nabor zvezd nablyudalsya iz dvuh observatorii, raspolozhennyh na ochen' raznyh shirotah, dolzhny sushestvovat' sistematicheskie razlichiya mezhdu izmerennymi skloneniyami zvezd, kak funkciya ot zvezdnogo vremeni.
311 To test the existence of this effect, Courvoisier analyzed the catalogues containing measurements made at Heidelberg (ϕ1 = + 49.24) and at Cape Town, South Africa (ϕ2 = 33.48). Chtoby proverit' sushestvovanie etogo effekta, Kurvuaz'e proanaliziroval katalogi, soderzhashie izmereniya, vypolnennye v Geidel'berge (ϕ1 = + 49.24) i v Keiptaune, Yuzhnaya Afrika (ϕ2 = 33.48).
312 Let D1 be the declination of some star measured from Heidelberg, and D2 the declination of the same star measured from Cape of Good Hope. Pust' D 1 sklonenie nekotoroi zvezdy, izmerennoe v Geidel'berge, a D 2 sklonenie toi zhe zvezdy, izmerennoe na myse Dobroi Nadezhdy.
313 Each declination, according to Courvoisier's analysis, undergoes a periodical change: Kazhdoe sklonenie, soglasno analizu Kurvuaz'e, preterpevaet periodicheskie izmeneniya:
314 Δz1 = 1/2 α1β1 Δz2 = 1/2 α2β2 (13) Δz1 = 1/2 α1β1 Δz2 = 1/2 α2β2 (13)
315 Those effects are not equal; therefore, the difference between the declinations measured at the two observatories should undergo a periodical change: Eti effekty ne ravny, i poetomu raznica mezhdu skloneniyami, izmerennymi dlya dvuh observatorii, dolzhna podvergat'sya periodicheskomu izmeneniyu:
316 D1 D2 = 1/21β1 α2β2) (14) D1 D2 = 1/21β1 α2β2) (14)
317 Using the typical values A=75 and D=40 obtained in former measurements, and taking into account the latitudes of Heidelberg and Cape Town, Courvoisier predicted that there should exist a difference between the measured declinations of the stars that should depend on their right ascension a: Ispol'zuya tipichnye znacheniya A=75 i D=40, poluchennye v predydushih izmereniyah i s uchetom shiroty Geidel'berge i Keiptauna, Kurvuaz'e predskazal, chto dolzhna sushestvovat' raznica mezhdu izmerennym skloneniem zvezd, kotorye dolzhny zaviset' ot ih pryamogo voshozhdeniya:
318 D1 D2 = + 0.16′′ 0.18′′. D1 D2 = + 0.16′′ 0.18′′.
319 cos (α 5h) 0.16′′. cos (α 5h) 0.16′′.
320 cos 2(α 5h) (15) cos 2(α 5h) (15)
321 The amplitude was obtained by comparing the astronomical data of the two observatories, and led to v =750 km/s. Amplituda byla poluchena putem sopostavleniya astronomicheskih dannye dvuh observatorii, i privela k V = 750 km / s.
322 Table 3 contains Courvoisiers comparison between the observed and predicted values of D1D2. V tablice 3 privedeny sravneniya Kurvuaz'e v period mezhdu nablyudaemym i prognoziruemym znacheniyam D1D2.
323 The third column of the table presented the observed values corrected for null declination, in order to avoid classical errors due to atmospheric refraction, etc. V tret'em stolbce tablicy predstavleny nablyudaemye znacheniya s popravkoi na nulevoe sklonenie, dlya togo, chtoby izbezhat' klassicheskih oshibok, svyazannyh s atmosfernoi refrakciei i t.d.
324 There is a better agreement between the theoretical prediction and the corrected values than with the raw data. Sushestvuet luchshee soglasie mezhdu teoreticheskimi predskazaniyami i skorrektirovannymi znacheniyami, chem s syrymi dannymi.
325
326 In his analysis of the second method, Courvoisier assumed that the Lorentz contraction of the Earth produces a local periodical change of the direction of the gravitational field. V svoem analize vtorogo sposoba Kurvuaz'e predpolagal, chto sokrashenie Lorenca dlya Zemli sozdaet lokal'noe periodicheskoe izmenenie napravleniya gravitacionnogo polya.
327 This effect was not compensated by changes in the direction of the astronomical instruments. Etot effekt ne kompensiruetsya za schet izmeneniya napravleniya astronomicheskih instrumentov.
328 Therefore, he was led to think that the effect could also be detected in an experiment using a terrestrial light source. Takim obrazom, on prishel k mneniyu, chto effekt mozhet byt' takzhe obnaruzhen v hode eksperimenta s ispol'zovaniem nazemnogo istochnika sveta.
329 {23} He placed a mercury mirror directly below the observatory meridian circle and pointed the telescope downward. On pomestil rtutnoe zerkalo neposredstvenno pod meridian observatorii i napravil teleskopa vniz.
330 The instrument was then delicately adjusted in such a way that it was possible to observe the reflected image of the micrometer threads superimposed to the real threads. Pribor byl zatem tonko otregulirovan takim obrazom, chtoby mozhno bylo nablyudat' otrazhennoe izobrazhenie nitei mikrometra, nalozhennye na real'nye niti.
331 The position of the telescope was locked, and observations were made of the relative displacement of the micrometer thread and its image. Polozhenie teleskopa bylo zafiksirovano, i byli vypolneny nablyudeniya otnositel'nogo smesheniya niti mikrometra i ee otrazheniya.
332 He predicted the following deflection in the East-West direction: On predskazal sleduyushie otkloneniya v napravlenii vostok-zapad:
333 Δz = (1/4)(v/c)2. Δz = (1/4)(v/c)2.
334 [sin ϕ.sin2D.sin (θA) + cos ϕ.cos2D.sin 2(θA)] (16) [sin ϕ.sin2D.sin (θA) + cos ϕ.cos2D.sin 2(θA)] (16)
335 Table 3. Tablica 3.
336 Difference between the declinations of a star (D1D2), observed from two distant observatories, as a function of sidereal time α. Razlichie mezhdu skloneniyami zvezd (D1D2), nablyudaemoe iz dvuh udalennyh observatorii, kak funkciya ot zvezdnogo vremeni α.
337
αD1D2

observed observed (corrected) prediction
0 h + 0.35′′ + 0.35′′ + 0.26′′
1 h + 0.21′′ + 0.21′′ + 0.16′′
2 h + 0.01′′ + 0.01′′ + 0.04′′
3 h 0.07′′ 0.07′′ 0.07′′
4 h 0.17′′ 0.17′′ 0.16′′
5 h + 0.03′′ + 0.03 0.17′′
6 h + 0.17′′ + 0.17 0.14′′
7 h 0.03′′ 0.03′′ 0.06′′
8 h + 0.07′′ + 0.07′′ + 0.04′′
9 h + 0.10′′ + 0.10′′ + 0.14′′
10 h + 0.08′′ + 0.08′′ + 0.25′′
11 h + 0.09′′ + 0.09′′ + 0.32′′
12 h + 0.29′′ + 0.29′′ + 0.34′′
13 h + 0.32′′ + 0.35′′ + 0.32′′
14 h + 0.29′′ + 0.39′′ + 0.29′′
15 h 0.04′′ + 0.22′′ + 0.25′′
16 h 0.21′′ + 0.13′′ + 0.20′′
17 h 0.23′′ + 0.18′′ + 0.19′′
18 h 0.29′′ + 0.12′′ + 0.20′′
19 h 0.31′′ + 0.10′′ + 0.23′′
20 h 0.17′′ + 0.17′′ + 0.29′′
21 h + 0.04′′ + 0.30′′ + 0.33′′
22 h + 0.26′′ + 0.36′′ + 0.34′′
23 h + 0.38′′ + 0.41′′ + 0.32′′
αD1D2

Nablyudenie Nablyudenie (skorrektirovano) Predskazanie
0 ch + 0.35′′ + 0.35′′ + 0.26′′
1 ch + 0.21′′ + 0.21′′ + 0.16′′
2 ch + 0.01′′ + 0.01′′ + 0.04′′
3 ch 0.07′′ 0.07′′ 0.07′′
4 ch 0.17′′ 0.17′′ 0.16′′
5 ch + 0.03′′ + 0.03 0.17′′
6 ch + 0.17′′ + 0.17 0.14′′
7 ch 0.03′′ 0.03′′ 0.06′′
8 ch + 0.07′′ + 0.07′′ + 0.04′′
9 ch + 0.10′′ + 0.10′′ + 0.14′′
10 ch + 0.08′′ + 0.08′′ + 0.25′′
11 ch + 0.09′′ + 0.09′′ + 0.32′′
12 ch + 0.29′′ + 0.29′′ + 0.34′′
13 ch + 0.32′′ + 0.35′′ + 0.32′′
14 ch + 0.29′′ + 0.39′′ + 0.29′′
15 ch 0.04′′ + 0.22′′ + 0.25′′
16 ch 0.21′′ + 0.13′′ + 0.20′′
17 ch 0.23′′ + 0.18′′ + 0.19′′
18 ch 0.29′′ + 0.12′′ + 0.20′′
19 ch 0.31′′ + 0.10′′ + 0.23′′
20 ch 0.17′′ + 0.17′′ + 0.29′′
21 ch + 0.04′′ + 0.30′′ + 0.33′′
22 ch + 0.26′′ + 0.36′′ + 0.34′′
23 ch + 0.38′′ + 0.41′′ + 0.32′′
338 {24} Courvoisier made two series of observations: 22-24 October and 22-25 November 1922. Kurvuaz'e vypolnil dve serii nablyudenii: 2224 oktyabrya i 2225 noyabrya 1922 goda.
339 He noticed that temperature changes affected the position of the telescope, and that this influence had to be taken into account. On zametil, chto izmeneniya temperatury povliyalo na polozhenie teleskopa, prichem vliyanie eto dolzhno byt' prinyato vo vnimanie.
340 From the uncorrected observed measurements he computed the following values: Iz nablyudaemyh neispravlennyh izmerenii on vychislil sleduyushie znacheniya:
341 A = 74 10; D = +67 13; v = 920 73 km/s A = 74 10; D = +67 13; v = 920 73 km/s
342 Applying a temperature correction, he obtained the following results: Primenyaya korrekciyu temperatury, on poluchil sleduyushie rezul'taty:
343 A = 98 7; D = +25 11; v = 500 47 km/s A = 98 7; D = +25 11; v = 500 47 km/s
344 This experiment was repeated by August Kopff, of the Heidelberg observatory, from 10 to 29 June 1923. Etot eksperiment byl povtoren Avgustom Kopfom iz Geidel'bergskoi observatorii s 10 po 29 iyunya 1923 goda.
345 As in the case of Courvoisier's experiment, there was a strong effect due to temperature changes (temperature varied between +6C and +17C). Kak i v sluchae eksperimenta Kurvuaz'e, ne bylo sil'nogo effekta v rezul'tate izmeneniya temperatury (temperatura kolebalas' ot +6 S do +17C).
346 Courvoisier analyzed Kopff s data assuming the values A = 75 and D = +40. Kurvuaz'e proanaliziroval dannye Kopfa, prinyav znacheniya A = 75 i D = +40.
347 After applying temperature corrections, he obtained a speed of 753 57 km/s. Posle primeneniya temperaturnyh popravok, on poluchil skorost' 753 57 km/s.
348
349 Courvoisier also attempted to detect the motion of the Earth relative to the ether by other methods. Kurvuaz'e takzhe popytalsya obnaruzhit' dvizhenie Zemli otnositel'no efira drugimi metodami.
350 He regarded the positive result of the nadir observation method as a confirmation of his hypothesis that the Lorentzs contraction produced an observable periodical change of the local vertical. On schital polozhitel'nymi rezul'taty nablyudeniya nadira kak podtverzhdenie svoei gipotezy, chto sokrashenie Lorenca proizvodit nablyudaemye periodicheskie izmeneniya mestnoi vertikali.
351 He soon devised other ways of observing such an effect. Vskore on razrabotal drugie sposoby nablyudeniya takogo effekta.
352
353 One of the instruments he used was a plumb line attached to one of the columns of the Babelsberg observatory. Odnim iz ispol'zuemyh im instrumentov byl otves, prikreplennyi k odnoi iz opor Babel'sbergskoi observatorii.
354 The main body of the plumb line was a metallic rod, 95 cm long. Osnovnym telom linii otvesa byl metallicheskii sterzhen', 95 sm v dlinu.
355 At its lower end there was a mark that was illuminated and projected upon a wall. Na ego nizhnem konce byla otmetka, kotoraya byla osveshena i proecirovalas' na stenu.
356 It was possible to observe deflections of about 0.05″ of the direction of the plumb line, in the East-West direction.24 Mozhno bylo nablyudat' otkloneniya napravleniya otvesa primerno na 0,05″ v napravlenii vostok-zapad. 24
357 Measurements made in 1925 with this instrument led to a speed of the Earth of about 400 km/s, assuming A = 75 and D = +40. Izmereniya, provedennye v 1925 godu s etim instrumentom pokazali skorost' Zemli okolo 400 km/s, pri A = 75 i D = +40 .
358 In 1931 Courvoisier improved this instrument observing the motion of its tip with the aid of a microscope (.... 10). V 1931 godu Kurvuaz'e usovershenstvoval etot instrument, nablyudaya za dvizheniem ego konca s pomosh'yu mikroskopa (ris. 10).
359 Now he was able to compute the three parameters of the Earth's motion, obtaining: Teper' on byl v sostoyanii vychislit' tri parametra dvizheniya Zemli, poluchiv:
360 A = 64 6; D = +50 9; v = 367 29 km/s A = 64 6; D = +50 9; v = 367 29 km/s
361
362 {25}.... 10. Ris. 10.
363 Courvoisiers plumb line apparatus for measuring oscillations of the local gravitational vertical due to Lorentz contraction. Otves Kurvuaz'e dlya izmereniya kolebanii mestnoi gravitacionnoi vertikali iz-za sokrasheniya Lorenca.
364 Similar observations were made by Esclangon, with the help of André-Louis Danjon, using two horizontal pendulums with perpendicular motions.25 Analogichnye nablyudeniya vypolnil Eksklangon s pomosh'yu Andre-Lui Danzhona, ispol'zuya dva gorizontal'nyh mayatnika s perpendikulyarnymi dvizheniyami 25
365 One of the pendulums lead to A=69; for the second pendulum, A=52 Esclangon did not provide other information and did not attempt to compute the speed of the Earth. Odin iz mayatnikov pokazal A=69 ;. dlya vtorogo mayatnika A = 52, Esklangon ne predostavil drugie svedeniya i ne pytalsya vychislit' skorost' Zemli.
366 {26}
367 Another way of observing the variation of the local vertical direction, according to Courvoisier, was with the aid of bubble levels.26 Drugoi sposob nablyudeniya za izmeneniem napravleniya mestnoi vertikali, po Kurvuaz'e, byl vypolnen s pomosh'yu puzyr'kovyh urovnei. 26
368 He used two very sensitive level meters. On ispol'zoval dva ochen' chuvstvitel'nyh urovnemerov.
369 One of them was attached to the floor of the Babelsberg underground clock room, and the other one was attached in a horizontal position to one of the columns of the same room. Odin iz nih byl prikreplen k polu Babel'sbergskoi podzemnoi komnaty s chasami, a drugoi byl prikreplen v gorizontal'nom polozhenii k odnoi iz opor etoi zhe komnaty.
370 Courvoisier measured the difference between the marks of the two level meters. Kurvuaz'e izmerili raznicu mezhdu otmetkami dvuh urovnemerov.
371 The maximum predicted effect was about 0.30″, and with the delicate instruments used by Courvoisier it was possible to measure angular changes as small as 0,03″. Maksimal'nyi ozhidaemyi effekt sostavil okolo 0,30″, i s tochnymi instrumentami, ispol'zuemymi Kurvuaz'e, mozhno bylo izmerit' uglovye izmeneniya velichinoi do 0,03″.
372 In the first series of measurements between 15 and 26 June 1929, Courvoisier obtained the following results: V pervoi serii izmerenii mezhdu 15 i 26 iyunya 1929 goda, Kurvuaz'e byli polucheny sleduyushie rezul'taty:
373 A = 59 6; D = +51 9; v = 446 34 km/s A = 59 6; D = +51 9; v = 446 34 km/s
374
375 According to Courvoisier's hypothesis, the Earth undergoes a real contraction in the direction of its motion through the ether, and this contraction would produce observable periodical changes of the local value of gravity as a function of sidereal time. Soglasno gipoteze Kurvuaz'e, Zemlya podvergaetsya real'nym sokrasheniem v napravlenii ee dvizheniya cherez efir, i eto sokrashenie budet proizvodit' nablyudaemye periodicheskie izmeneniya mestnogo znachenie sily tyazhesti v zavisimosti ot zvezdnogo vremeni.
376 Pendulum clocks at different places of the Earth should show slightly different readings, and their phases should exhibit a periodical relative fluctuation. Mayatnikovye chasy v raznyh mestah Zemli dolzhny pokazyvat' nemnogo razlichnye znacheniya, a ih fazy dolzhny obladat' otnositel'noi periodichnost'yu kolebanii.
377 Courvoisier analyzed data on pendulum clocks of different astronomical observatories, in an attempt to detect this effect. Kurvuaz'e proanaliziroval dannye o mayatnikovyh chasah razlichnyh astronomicheskih observatorii v popytke obnaruzhit' etot effekt.
378 Using radio signals it was possible to compare the rates of clocks at very distant observatories. Ispol'zuya radiosignaly, mozhno sravnit' hod chasov dlya vzaimno ochen' otdalennyh observatorii.
379 The Annapolis Observatory emitted regular time signals from its pendulum clocks. Observatoriya Annapolisa translirovala regulyarnye signaly vremeni ot svoih mayatnikovyh chasov.
380 It was possible to compare the rate of those pendulums to those at another place. Mozhno bylo sravnit' skorost' ih mayatnika tam i v drugom meste.
381 Courvoisier asked the help of Bernhard Wanach, from Potsdam, who compared the rate of the pendulum clocks of that observatory to the signals received from Annapolis, from September 1921 to November 1922.27 Courvoisiers analysis of Wanachs data led to the following results: Kurvuaz'e poprosil pomoshi Bernharda Vanaha iz Potsdama, kotoryi sravnil skorost' mayatnikovyh chasov etoi observatorii s signalami iz Annapolisa s sentyabrya 1921 po noyabr' 1922 g. 27 Analiz Kurvuaz'e dannyh Vanaha privel k sleduyushim rezul'tatam:
382 A = 56 12; D = +40 (estimated); v = 873 228 km/s A = 56 12; D = +40 (ocenka); v = 873 228 km/s
383 Afterwards, a comparison was made using a comparison between the clocks of Annapolis, Potsdam, Ottawa, and Bordeaux. Posle etogo bylo provedeno sravnenie pri pomoshi sopostavleniya mezhdu chasami v Annapolise, Potsdame, Ottave i Bordo.
384 The mean result obtained by Courvoisier was: Srednii rezul'tat, poluchennyi Kurvuaz'e, byl:
385 A = 81 5; D = +34 5; v = 650 50 km/s A = 81 5; D = +34 5; v = 650 50 km/s
386 {27} Much later, Courvoisier presented another confirmation of this effect. Mnogo pozzhe, Kurvuaz'e predstavil eshe odno podtverzhdenie etogo effekta.
387 He compared the catalogues of time correction of the observatories of Greenwich, Potsdam, Buenos Aires and Mount Stromslo for the period from 1948 to 1954.28 On sravnil katalogi vremennoi korrekcii observatorii Grinvicha, Potsdama, Buenos-Airesa i Maunt-Stromlo za period s 1948 po 1954 god. 28
388 There was a nice agreement between the theoretical predictions and the observed time differences, especially in the case of the years 1951-1954. Bylo vyyavleno horoshee soglasie mezhdu teoreticheskimi predskazaniyami i nablyudaemymi razlichiyam vremeni, osobenno v sluchae dannyh za 19511954 gody.
389
390 Courvoisier supposed that the rate of pendulum clocks would vary because of the periodical gravity changes, but mechanical chronometers should not suffer similar changes. Kurvuaz'e predpolagal, chto skorost' mayatnikovyh chasov budet menyat'sya v rezul'tate periodicheskih izmenenii sily tyazhesti, no mehanicheskie hronometry ne dolzhny byt' podverzheny podobnym izmeneniyam.
391 Therefore it should be possible to observe effects due to the absolute motion of the Earth comparing pendulum clocks to mechanical chronometers at a single place. Poetomu dolzhna byt' vozmozhnost' nablyudat' effekty, svyazannye s absolyutnym dvizheniem Zemli, putem sravneniya mayatnikovyh chasov i mehanicheskogo hronometra v odnom meste.
392 Comparisons were made both at Babelsberg and at Potsdam (with the help of Wanach). Sravneniya byli sdelany v Babel'sberge i v Potsdame (s pomosh'yu Vanaha).
393 In his analysis, Courvoisier assumed the value D = +40 and obtained A = 104 9 and v = 750 km/s. V svoem analize Kurvuaz'e predpolagal znachenie D = +40 i poluchil A = 104 9 i v = 750 km/s.
394
395 If the Lorentz contraction of the Earth produces gravitational effects, then it should be possible to find its influence on the tides. Esli sokrashenie Lorenca dlya Zemli proizvodit gravitacionnye effekty, to dolzhno byt' vozmozhnost' naiti ih vliyanie na prilivy i otlivy.
396 Esclangon analyzed a set of 166,500 tide measurements, made at Pola, on the Adriatic sea, from 1898 to 1916. Esklangon proanaliziroval nabor 166500 izmereniya priliva, sdelannye v Pula, na poberezh'e Adriaticheskogo morya, s 1898 po 1916 god.
397 He obtained a term with the period of on sidereal day, that could not be associated with the Sun or the Moon, and ascribed it to a dissymmetry of space.29 On poluchil element s periodom v zvezdnye sutki, kotorye ne mogut byt' svyazany s Solncem ili Lunoi, i otnes ego k asimmetrii prostranstva 29
398 This tidal effect could be described as: Etot prilivnoi effekt mozhet byt' opisan kak:
399 48 mm.cos (t 146.1) + 25 mm.cos (t 244.6) (16) 48 mm.cos (t 146.1) + 25 mm.cos (t 244.6) (16)
400 If the local gravity undergoes periodic changes, it should be possible to detect this effect with sensitive gravimeters. Esli lokal'naya sila tyazhesti preterpevaet periodicheskie izmeneniya, dolzhna byt' vozmozhnost' obnaruzhit' etot effekt chuvstvitel'nymi gravimetrami.
401 In 1927 Courvoisier (with the help of Sergei Gaposchkin) attempted for the first time to measure gravity variations using a very sensitive torsion gravimeter.30 V 1927 g. Kurvuaz'e (s pomosh'yu Sergeya Gaposhkina) vpervye popytalsya dlya izmereniya variacii sily tyazhesti primenit' ochen' chuvstvitel'nyi gravimetr krucheniya. 30
402 The instrument could detect a change Δg/g of 3×106, corresponding to a displacement of 0.2 mm of the gravimeter pointer. Etot instrument mog obnaruzhit' izmenenie Δg/g of 3×106, chto sootvetstvuet smesheniyu 0,2 mm ukazatelya gravimetra.
403 From a series of measurements undertaken from 1927 to 1928 Courvoisier computed the following values: Iz serii izmerenii, vypolnennyh s 1927 po 1928 gg. Kurvuaz'e vychislil sleduyushie znacheniya:
404 A = 62 5; D = +32 8; v = 543 55 km/s A = 62 5; D = +32 8; v = 543 55 km/s
405 {28} In 1932 Courvoisier obtained new results, taking into account in this new paper some effects due to temperature and humidity. V 1932 g. Kurvuaz'e byli polucheny novye rezul'taty, prinimayushie vo vnimanie v etoi novoi rabote effekty, svyazannye s temperaturoi i vlazhnost'yu.
406 The new results obtained by him were Novye rezul'taty, poluchennye im, sostavili
407 A = 50 7; D = +45 18; v = 498 78 km/s A = 50 7; D = +45 18; v = 498 78 km/s
408 For the first time, Courvoisier's results were criticized and checked. Vpervye rezul'taty Kurvuaz'e kritikovalis' i byli provereny.
409 In 1932, Rudolf Tomaschek and Walter Schaffernicht reported gravity measurements made with a new kind of gravimeter that was able to detect changes Δg/g of 108. V 1932 godu Rudol'f Tomashek i Uolter Shafferniht soobshili ob izmereniyah sily tyazhesti novym vidom gravimetra, kotoryi byl v sostoyanii obnaruzhit' izmeneniya Δg/g poryadka 108.
410 The instrument was placed inside a cave in a mountain, where the temperature was constant to 0.001 C. Pribor byl pomeshen v peshere v gorah, gde temperatura byla postoyannoi do 0,001 C.
411 No effect of the order of magnitude predicted by Courvoisier was observed.31 Effekt togo poryadka, kotoryi byl predskazan Kurvuaz'e, ne nablyudalsya. 31
412
413 It is well known that in 1879 James Clerk Maxwell wrote to David Peck Todd asking him about the possibility of computing the velocity of the solar system through the ether using available data on occultation of Jupiters satellites.32 Horosho izvestno, chto v 1879 godu Dzheims Klerk Maksvell pisal Devidu Pekku Toddu, sprashivaya ego o vozmozhnosti vychisleniya skorosti Solnechnoi sistemy cherez efir, s ispol'zovaniem imeyushihsya dannyh o zatmeniya sputnikov Yupitera. 32
414 Maxwell supposed that the motion of the solar system would produce an anisotropy of the speed of light that could be detected as a fluctuation of the times of occultation of Jupiter's satellites, observed from the Earth, with a period of about 12 years. Maksvell predpolozhil, chto dvizhenie Solnechnoi sistemy dolzhno proizvodit' anizotropiyu skorosti sveta, kotoraya mozhet byt' obnaruzhena kak fluktuaciya vremeni pokrytiya sputnikov Yupitera, nablyudaemyh s Zemli, s periodom okolo 12 let.
415 Todd answered, however, that the measurements available at that time were not precise enough for such computations. Todd otvetil, odnako, chto izmereniya, provodimye v to vremya, ne byli dostatochno tochny dlya takih vychislenii.
416 In 1930 Courvoisier published a paper where he presented an analysis of available observations of Jupiter's satellites and claimed that they led to a new determination of the velocity of the solar system relative to the ether.33 V 1930 Kurvuaz'e opublikoval stat'yu, gde on predstavil analiz imeyushihsya nablyudenii sputnikov Yupitera i utverzhdal, chto oni priveli k novomu opredeleniyu skorosi Solnechnoi sistemy otnositel'no efira. 33
417 He used data relative to the three inner Galilean satellites published by the Johannesbourg observatory (19081926), comparing those measurements to those of the observatories of Cape Town, Greenwich and Leyden (1913 1924). On ispol'zoval dannye treh vnutrennih galileevyh sputnikov, opublikovannye observatoriei v 'ohannesburge (19081926), sravnivaya eti izmereniya s analogichnymi iz observatorii Keiptauna, Grinvicha i Leidena (19131924).
418 He confirmed Maxwell's anticipation of a fluctuation with a period of about 12 years and obtained the following results: On podtverdil ozhidaniya Maksvella o nalichii kolebanii s periodom okolo 12 let, i poluchil sleduyushie rezul'taty:
419 A = 126 10; D = +20; v = 885 100 km/s A = 126 10; D = +20; v = 885 100 km/s
420
421 According to the theory of ether accepted by Courvoisier, the speed of light is constant relative to the ether, but could not be constant relative to the {29} Earth: there should be an observable anisotropy of the speed of light due to the absolute motion of the Earth. Soglasno teorii efira, prinyatoi Kurvuaz'e, skorost' sveta postoyanna otnositel'no efira, no ne mozhet byt' postoyannoi otnositel'no Zemli: dolzhna nablyudat'sya anizotropiya skorosti sveta pri absolyutnom dvizhenii Zemli.
422 He assumed that this would produce an observable difference in measurements of stellar aberration observed in different directions.34 On predpolozhil, chto ono dolzhno proizvesti nablyudaemye razlichiya v izmereniyah zvezdnoi aberracii, kotoraya nablyudaetsya v raznyh napravleniyah 34
423 Using the available data, Courvoisier obtained the following results: Na osnovanii imeyushihsya dannyh, Kurvuaz'e poluchil sleduyushie rezul'taty:
424 A = 112 20; D = +47 20; v = 600 305 km/s A = 112 20; D = +47 20; v = 600 305 km/s
Naverh
[Citirovat'][Otvetit'][Novoe soobshenie]
A.P. Vasi
Re: Chernaya dyra 16.10.2013 22:48

Prochital tak skazat' standartnuyu situaciyu - kogda mnogo
umnichayut a po smyslovoi suti to otvetit' dostatochno gramotno
i prosto nikto ne v sostoyanii.

Rekomenduyu prochitat' vse soobsheniya vnimatel'no,
i v itoge Vy zametite, chto vse nedalekie a tol'ko vumnichat'
i mogut.
-----------------------------------------------------------------------------------------
Neobhodimo srochno ispravit' oshibku v astronomii
: Segodnya v 02:24:25

Yshsho odyn tablicu umnozheniya dlya sebya otkryvaet. :-* :laugh:
Zvezdnye sutki ne ravny solnechnym. Nu nado zhe, a "muzhiki-to ne znayut" (S).


Tema na Astroforume.
ZY Operedili...
 
-------------------------------------------------------------------------------------------------

Nikto tam nikogo ne operedil, zadayushemu vopros odin bui
ni koi kon' vnyatno ni kto ne ob'yasnil, tol'ko dali neponyatnye
i bessmyslennye teksty pochitat' - i na kuya takie sovety.

Sam vopros vyedennogo yaica ne stoit.

Nikto dazhe vnyatno ne mozhet ob'yasnit' chto sutki mesyacy i gody
s ih deleniem nikak ne sovpadayut prosto --- kratno--- esli etu
velichinu podelit'.
A chasy minuty i sekundy, imeyut kratnuyu privyazku k vrasheniyu
Zemli po otnosheniyu k Solncu, - odin oborot - Zemli = 24 chasa,
a odin oborot Zemli vokrug Solnca ne mozhet dazhe teoreticheski sovpadat'
i tochno sootvetstvovat' kakomu-to celomu kolichestvu oborotov Zemli,
kogda Zemlya delaet polnyi oborot vokrug Solnca - i hot' eto i erunda,
no takuyu erundu dolzhny ob'yasnyat' maksimum s tret'ego posta, i tak chtoby
chitayushii ponyal odnoznachno - chto za mrakobesie nedalekih kotorye ne
mogut vnyatno i odnoznachno vyrazit' svoyu mysl' -
Vy hot' ponimaete chto Vam - vsem - nad astro-balaganom nado rabotat', chtoby
prevratit' v astro-rech'.

Zamet'te nikto ne mozhet vnyatno, prosto, i adekvatno izlagat'
svoi mysli po voprosu po suti.




Naverh
[Citirovat'][Otvetit'][Novoe soobshenie]
A.P. Vasi
Re: Chernaya dyra 16.10.2013 23:48

Re: Mezhdunarodnaya Associaciya Temnogo Neba
Otvet #2 : 10.10.2013 [00:44:19]
Vy pro eto: http://ru.wikipedia.org/wiki/%D1%E2%E5%F2%EE%E2%EE%E5_%E7%E0%E3%F0%FF%E7%ED%E5%ED%E8%E5
Da, o svetovom zagryaznenii. Budut li u nas predprinimat' kakie-to mery, ili eto v rashe ne vozmozhno ?
U nas vozle Krasnodara, est' torgovyi centr OZ. Fonari kotorye osveshayut stoyanku, imeyut konstrukciyu, pohozhuyu na tarelku, perevernutuyu vverh dnom.
Interesno pochemu ne vezde primenyayut takuyu ili pohozhuyu konstrukciyu ?
Kto by u nas ozabotilsya o svetovom zagryaznenii nochnogo neba.


-----------------------------------------------------------------------------------------

Nu eto voobshe pipec mysli.

Tut dazhe dumat' ne nuzhno - yasnyi kon' chto fonari
kak osveshenie - eto tol'ko odin iz metodov
chtoby bylo vidno tomu kto smotrit.

I yasnyi kon' chto esli by prodavalis' ochki v magazine
svetosil'nye, i nakladnye svetosil'nye linzy dlya glaz,
to nakoi eti fonari v principe by sdalis'.

I esli by u kazhdogo lyubitelya astronomii byl svoi sputnik
orbital'nyi to ego by eta bueta s zasvetkoi by tozhe
ne sil'no bespokoila.

S moei tochki zreniya ran'she u kazhdogo lyubitelya astronomii
budet nasovskii nedorogoi seriinyi orbital'nyi sputnik,
chem smogut sdelat' svetosil'nye ochki ili nakladnye linzy
svetosil'nye.
Naverh
[Citirovat'][Otvetit'][Novoe soobshenie]
A.P. Vasi
Re: Chernaya dyra 31.10.2013 22:15

Vot ne proshlo i mnogo vremeni a sobstvenno s 2009 goda,
kogda relyativisty soizvolili razduplyatsya.

Hotya u nih i smeshno poluchaetsya mezhdu dvoikoi i troikoi po pyati-bal'noi.

Zdes' ocenka ne za vopros po suti, ibo eto uzhe izmeryal ya by v tysyachah,
zdes' ocenka skoree za balagan i ponimanie togo chto krichashii i
mnogochislennyi ne znachit luchshii.

A vot za takie oskorbleniya uchastnikov foruma, - v stile odinochka ne mozhet
reshit' vopros, - i vopros reshaetsya tol'ko stadom - to
ya by banil po ai pi i navsegda.

Hotya kto iz etih uchastnikov poimet kak ih zalpom zhahnuli.

Tak ploho dumat' o vseh i schitat' odnogo - ili malochislennyh bezmozgloi
individual'nost'yu, - mne prosto grustno.


\\\Sovershenno ochevidno, chto na dannyi moment vyborka iz nalichnyh uchastnikov diskussii statisticheski nedostatochno predstavitel'na. S pomosh'yu takoi vyborki nel'zya sdelat' nauchno-dostovernoe obobshenie.
\\\

---------------------------------------------------------------------------------------------------------

Re: Cushestvuet li foton?
Otvet #31 : Vchera v 23:29:43
davaite vyyasnim, Vy poluchili otvet na zaglavnyi vopros temy? Kakoi eto otvet?

Obsheizvestno, chto "speshka neobhodima tol'ko pri lovle bloh". A tut "idet igra po-krupnomu", kak spravedlivo otmetil Glubokouvazhaemyi Vov. :)

Sovershenno ochevidno, chto na dannyi moment vyborka iz nalichnyh uchastnikov diskussii statisticheski nedostatochno predstavitel'na. S pomosh'yu takoi vyborki nel'zya sdelat' nauchno-dostovernoe obobshenie.

Poka pochti nikak (za isklyucheniem, vozmozhno, QSS) ne proyavili sebya storonniki volnovoi teorii preobrazovaniya, izlucheniya, rasprostraneniya i poglosheniya elektromagnitnoi energii, kotorye po principial'nym soobrazheniyam britvy Okkama schitayut gipoteticheskuyu "chasticu foton" privlecheniem v teoriyu izlishnei sushnosti.

"Britva Ókkama (inogda lezvie Okkama, lat. lex parsimoniae) metodologicheskii princip, poluchivshii nazvanie ot imeni angliiskogo monaha-franciskanca, filosofa-nominalista Uil'yama Okkama (Ockham, Ockam, Occam; ok. 12851349). V kratkom vide on glasit: Ne sleduet mnozhit' sushee bez neobhodimosti (libo Ne sleduet privlekat' novye sushnosti bez krainei na to neobhodimosti). Etot princip formiruet bazis metodologicheskogo redukcionizma, takzhe nazyvaemyi principom berezhlivosti, ili zakonom ekonomii.

To, chto nazyvayut Britvoi Okkama, ne bylo sozdano Okkamom, esli imet' v vidu bazovoe soderzhanie etogo principa. To, chto v usloviyah Protorenessansa sformuliroval Okkam, bylo izvestno, po krainei mere, so vremen Aristotelya.

V sovremennom ponimanii princip Britvy Okkama sostoit v sleduyushem: esli kakoe-to yavlenie mozhet byt' ob'yasneno dvumya sposobami, naprimer, pervym cherez privlechenie sushnostei (terminov, faktorov, preobrazovanii i t. p.) A, V i S, a vtorym cherez A, V, S i D, i pri etom oba sposoba dayut odinakovyi rezul'tat, pri prochih ravnyh usloviyah sleduet schitat' vernym pervoe ob'yasnenie, to est' sushnost' D lishnyaya, i ee privlechenie izbytochno."
 
---------------------------------------------------------------------------------------------------------------------------------------------
Naverh
[Citirovat'][Otvetit'][Novoe soobshenie]
A.P. Vasi
Re: Chernaya dyra 31.10.2013 22:25

Menya smeshit Vibe aki polnyi trus so zvaniem professora, ni odnogo
vnyatnogo vyskazyvaniya ili voprosa po suti,
- ne mogu ponyat' - chego on ochkuet v dannoi situacii,
a ne vedet diskussiyu s tipichnymi slovami v nachale
posta
-------------

- Greban - nyi kon' kuda Vy nesete telegu -
doroga vot tam - i dvigat'sya nuzhno vot tak-to -
i vot takaya-to bueta - znachit vot to-to - a vot
takaya-to bueta znachit vot eto.
---


Tak ya mogu Vas uspokoit' on tak nikogda ne smozhet
imet' prakticheskogo opyta, znanii i umenii, -
chto-by ponimat' tak i dumat', i chto-by tak vesti diskussiyu.
Naverh
[Citirovat'][Otvetit'][Novoe soobshenie]
A.P. Vasi
Re: Chernaya dyra 31.10.2013 23:10

Vibe opozorilsya prevzoshel sam
sebya.

Prosit pravil'nyi otvet u sobesednika
na nepravil'no vydumannye im zhe ponty v stile idiotizm.

Vibe pridumal vot eto

\\\3) j.kepler.ii, ya proshu sformulirovat' ob'yasnenie vsem yavleniyam, dlya ob'yasneniya kotoryh ispol'zuetsya ponyatie fotona, bez ispol'zovaniya etogo ponyatiya.\\\

Mozhno byt' samym hitrym - no vsegda nuna pomnit'
chto ukraincy v osnovnoi svoei masse - hitrost',
hitroopost' vidyat srazu kak budto drugim shriftom,
i nado byt' prosto nedalekim chtoby pisat' takuyu
nelogichnuyu buetu.

U nas v mladshih klassah podobnymi zakidonami
drug druga smeshili -
V stile - a otvet' tol'ko da ili net - ne
pravda li? - ne durak li ty?.

Lyuboi otvet - logicheskoe popadalovo v logicheskii
lohotron.



----------------------------------------------------------------------

Offlain Dmitrii Vibe

  • Moderator
  • *****
  • Soobshenii: 13 677
  • Reiting: +362/-47
  • Evona kak...
    • Personal'naya stranica
Re: Cushestvuet li foton?
Otvet #47 : Segodnya v 20:43:16
Znachit, tak.

1) Bob, ogromnaya pros'ba -- ne otvechat' na poslednee soobshenie j.kepler.ii. Ya hochu dat' emu vozmozhnost' vypolnit' tvoi uzhe sformulirovannyi zapros.

2) j.kepler.ii, ya proshu Vas dat' opredelenie ponyatiya "sushestvuet".

3) j.kepler.ii, ya proshu sformulirovat' ob'yasnenie vsem yavleniyam, dlya ob'yasneniya kotoryh ispol'zuetsya ponyatie fotona, bez ispol'zovaniya etogo ponyatiya.

Do togo kak Vy eto sdelaete, proshu drugih soobshenii v razdele ne publikovat'.
 
I kto-to, kak vsegda, nes mne chush' o "tarelkah", i kto-to, kak vsegda, propovedoval dzen... (s) Zoopark

Onlain j.kepler.iiAvtor temy

  • *****
  • Soobshenii: 841
  • Reiting: +7/-2
Re: Cushestvuet li foton?
Otvet #48 : Segodnya v 21:05:57
Znachit, tak.
<...>
2) j.kepler.ii, ya proshu Vas dat' opredelenie ponyatiya "sushestvuet".
Nu chto zhe, sdelayu otchayannuyu popytku: :'(
Materializm utverzhdaet sushestvovanie edinstvennoi absolyutnoi substancii bytiya materii

"Materialízm (ot lat. materialis veshestvennyi) filosofskoe mirovozzrenie, v sootvetstvii s kotorym materiya (ob'ektivnaya real'nost') yavlyaetsya ontologicheski pervichnym nachalom (prichinoi, usloviem, ogranicheniem) v sfere bytiya, a ideal'noe (ponyatiya, volya, soznanie i tomu podobnoe) vtorichnym (rezul'tatom, sledstviem). Materializm utverzhdaet sushestvovanie edinstvennoi absolyutnoi substancii bytiya materii; vse sushnosti obrazovany materiei, a ideal'nye yavleniya (v tom chisle, soznanie) yavlyayutsya processami vzaimodeistviya material'nyh sushnostei. "

Do togo kak Vy eto sdelaete, proshu drugih soobshenii v razdele ne publikovat'.

Privedennyi tekst sootvetstvuet Vashim trebovaniyam?
 

Offlain Dmitrii Vibe

  • Moderator
  • *****
  • Soobshenii: 13 677
  • Reiting: +362/-47
  • Evona kak...
    • Personal'naya stranica
Re: Cushestvuet li foton?
Otvet #49 : Segodnya v 21:17:16
2) j.kepler.ii, ya proshu Vas dat' opredelenie ponyatiya "sushestvuet".
Nu chto zhe, sdelayu otchayannuyu popytku: :'(
...
Privedennyi tekst sootvetstvuet Vashim trebovaniyam?

Net, razumeetsya. On by sootvetstvoval, esli by ya prosil Vas: "Skopiruite, pozhaluista, tekst iz Vikipedii". Vot v etom sluchae Vash otvet byl by v samyi raz. No ya ne prosil Vas nichego kopirovat' iz Vikipedii. Ya prosil dat' opredelenie ponyatiya "sushestvuet". Dam podskazku. Opredelenie dolzhno nachinat'sya slovami: "Sushestvovat' oznachaet ..."

I eshe: tam est' i punkt 3.
 

Naverh
[Citirovat'][Otvetit'][Novoe soobshenie]
A.P. Vasi
Re: Chernaya dyra 6.11.2013 22:07

Ya estestvenno chto-to logichnoe dolzhen vyskazat' zdes'
po tekushim situaciyam na dvuh forumah po pohozhemu
voprosu.

V pervom variante ya kak govoritsya - snimayu shlyapu -
udivlen v principe.

Vo vtorom sluchae - molodec, no vyskazat' svoyu tochku
zreniya eto ne znachit chto est' sposobnosti pridumyvat'
samostoyatel'no.


----------------------------------------------------------------------------
1
\\\
Re: Voprosy po teorii otnositel'nosti (STO i OTO)
Otvet #2020 : Segodnya v 20:18:30 \\\


------------------------------------------------------------------------------
2
\\\
O roli teorii otnositel'nosti v nauke
Vchera :: 15:35:01
-----------------------------------------------------------------



Naverh
[Citirovat'][Otvetit'][Novoe soobshenie]
A.P. Vasi
Re: Chernaya dyra 15.11.2013 22:39

http://www.astrogalaxy.ru/forum/phpBB2/viewtopic.php?f=2&t=4314


Ya dumayu.
Naverh
[Citirovat'][Otvetit'][Novoe soobshenie]
A.P. Vasi
Re: Chernaya dyra 17.11.2013 9:50

U menya takoe chuvstvo chto svirepstvuet virus
- "idiotizm v fizike kak nauke",
i on davno porazil ochen' bol'shoe kolichestvo
chelovek, i on peredaetsya ot uchitelya k ucheniku.
Sobstvenno nado radovat'sya tem kogo etot virus
ne porazil.
Tol'ko na planete nedalekih ili porazhennyh
podobnym virusom - ne mogut za sto let pridumat'
novyh teorii, a sushestvuyushie - na urovne
intellekta - detskii lepet.
Al'ty dolzhny prosto radovat'sya etoi situacii
ibo osnovnaya massa ih konkurentov, porazhena
etim virusom.
Na skol'ko ya pomnyu v davnie vremena periodicheski
dlya predotvrasheniya podobnyh situacii zakryvali
izuchenie opredelennyh nauk na nekotoroe vremya let na
20-50, a potom vozobnovlyali eti nauki.
Naverh
[Citirovat'][Otvetit'][Novoe soobshenie]
[Novoe soobshenie] Forumy >> Obsuzhdenie publikacii Astroneta
Spisok  /  Derevo
V nachalo ] Pred. | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | Sled.V konec ]

Astronet | Nauchnaya set' | GAISh MGU | Poisk po MGU | O proekte | Avtoram

Kommentarii, voprosy? Pishite: info@astronet.ru ili syuda

Rambler's Top100 Yandeks citirovaniya