177
|
|
|
178
| The Leyden measurements had used four stars close to the North Pole.
| Pri izmereniyah v Leidene ispol'zovalis' chetyre zvezdy, blizkie k Severnomu polyusu.
|
179
| The difference zz' was measured in a series of observations, at the times of upper and lower culmination of each star.
| Raznica zz′ byla izmerena v serii nablyudenii v momenty verhnei i nizhnei kul'minacii kazhdoi zvezdy.
|
180
| The observed values of the periodical components of zz'
amounted to less than 1'', varying from 0.04'' for one of the stars to
about 0.5″ for another.
| Nablyudaemye znacheniya periodicheskih komponent zz′ sostavili
menee 1″, s variaciei ot 0,04″ dlya odnoi iz zvezd do 0,5″ dlya drugoi.
|
181
| The error of the measurements was estimated as 0.01″, therefore the effect was regarded as significant.
| Pogreshnost' izmerenii byla ocenena kak 0,01″, poetomu effekt rascenen kak znachimyi.
|
182
| From the Leyden data Courvoisier obtained the results:
| Iz Leidenskih dannyh Kurvuaz'e byli polucheny rezul'taty:
|
183
| A = 104 21; D = +39 27; v = 810 215 km/s
| A = 104 21; D = +39 27; v = 810 215 km/s
|
184
| {14} The estimated error of the speed amounted
to about 25%.
| Ocenivaemaya oshibka skorosti sostavila okolo 25%.
|
185
| The errors of the right ascension and declination amounted to about 1/15 of the full circle.
| Oshibki pryamogo voshozhdeniya i skloneniya sostavili okolo 1/15 polnogo kruga.
|
186
| Between 1921 and 1922 Courvoisier repeated the Leyden measurements, but with a slight change of method.
| Mezhdu 1921 i 1922 gg. Kurvuaz'e povtoril leidenskie izmereniya, no s nebol'shim izmeneniem metoda.
|
187
| Instead of a meridian circle he used a Wanschaff vertical
circle that enabled him to make measurements of the stars at any time
during the night.
| Vmesto meridiannogo kruga on ispol'zoval vertikal'nyi krug
Vanshaffa, kotoryi pozvolil emu proizvesti izmereniya zvezd v lyuboe vremya v
techenie nochi.
|
188
| Therefore his measurements were not limited to two sidereal times for each star.
| Poetomu ego izmereniya ne byli ogranicheny dvumya momentami zvezdnogo vremeni dlya kazhdoi zvezdy.
|
189
|
|
|
190
| From 4 June to 14 December 1921 he made a series of 142
measurements of the polar star BD +89.3, and from 18 March to 23 May
1922 he made further 64 determinations of zz'.
| S 4 iyunya po 14 dekabrya 1921 godu on proizvel seriyu iz 142
izmerenii Polyarnoi zvezdy BD 89,3 , a s 18 marta po 23 maya 1922 g. on
vypolnil dal'neishie 64 opredeleniya zz′.
|
191
| From those measurements Courvoisier obtained:
| Iz etih izmerenii Kurvuaz'e poluchil:
|
192
| A = 93 7; D = +27 12; v = 652 71 km/s
| A = 93 7; D = +27 12; v = 652 71 km/s
|
193
| The estimated relative error of the speed was reduced to about
10% and the errors of the right ascension and declination amounted to
less than 1/30 of the full circle.
| Raschetnaya otnositel'naya oshibka opredeleniya skorosti snizilas'
do okolo 10%, a oshibki opredeleniya pryamogo voshozhdeniya i skloneniya
sostavili menee chem 1/30 polnogo kruga.
|
194
| Courvoisiers work called the attention of a French astronomer,
the director of the Strasbourg observatory, Ernest Esclangon, who
repeated those measurements.18
| Rabota Kurvuaz'e obratila na sebya vnimanie francuzskogo
astronoma, direktora Strasburgskoi observatorii, Ernesta Esklangona,
kotoryi povtoril eti izmereniya. 18
|
195
| He confirmed the existence of a systematic effect of the same order of magnitude, and computed the values of A=69 and D=44.
| On podtverdil sushestvovanie sistematicheskogo effekta togo zhe poryadka velichiny, i vychislil znacheniya A=69 i D=44.
|
196
| Esclangon did not publish the estimated errors of his evaluation, nor the estimated speed of the Earth.
| Esklangon ne opublikoval ni raschetnye oshibki ego ocenki, ni ozhidaemuyu skorost' Zemli.
|
197
|
|
|
198
| Other evaluations were later obtained by Courvoisier using
measurements made at München (19301931) and Breslau (19331935), with
the following results:
| Drugie dannye byli pozdnee polucheny Kurvuaz'e s ispol'zovaniem
izmerenii, provedennyh v Myunhene (1930-1931) i Breslavle (1933-1935), so
sleduyushimi rezul'tatami:
|
199
|
München
| Breslau (1)
| Breslau (2)
|
A = 73 6
| A = 92 12
| A = 80 4
|
D = +40 (estimated)19
| D = +44 25
| D = +30 10
|
v = 889 93 km/s
| v = 927 200 km/s
| v = 700 60 km/s |
|
Myunhen
| Breslavl' (1)
| Breslavl' (2)
|
A = 73 6
| A = 92 12
| A = 80 4
|
D = +40 (ocenka) 19
| D = +44 25
| D = +30 10
|
V = 889 93 km / s
| V = 927 200 km / s
| V = 700 60 km / s |
|
200
| The results obtained in the second Breslau series presented the smallest errors.
| Rezul'taty, poluchennye vo vtoroi serii Breslavlya, predstavleny naimen'shimi oshibkami.
|
201
|
|
|
202
| In 1945, after his retirement, Courvoisier made a final series of observations from Basel.
| V 1945 godu, posle vyhoda na pensiyu, Kurvuaz'e vypolnil okonchatel'nye serii nablyudenii v Bazele.
|
203
| He obtained the following results:
| On poluchil sleduyushie rezul'taty:
|
204
| A = 60 14; D = +40 (estimated); v = 656 157 km/s
| A = 60 14 , D = +40 (ocenka), v = 656 157 km / s
|
205
| {15}
If we compare all the series of measurements, we notice that the right
ascension varied between 60 and 104 (more than the estimated errors);
the declination varied between 39 and 44 (within the estimated
errors);20 and the speed varied between 652 and 927 km/s (within estimated errors).
| Esli sravnit' vse serii izmerenii, my zamechaem, chto pryamoe
voshozhdenie var'irovalas' mezhdu 60 i 104 (bolee chem raschetnaya
oshibka); sklonenie ot 39 do 44 (v predelah raschetnyh oshibok), 20 i skorost' ot 652 do 927 km / s (v predelah raschetnyh oshibok).
|
206
| Notice that it is very hard to explain away Courvoisier's
results as due to instrument errors, because the observed effect varied
with periods of one sidereal day and half sidereal day.
| Obratite vnimanie, chto ochen' trudno ob'yasnit' rezul'taty
Kurvuaz'e instrumental'nymi pogreshnostyami, tak kak nablyudaemyi effekt
izmenyaetsya s periodami v odni zvezdnye sutki i polovinu zvezdnyh sutok.
|
207
| All common causes of error (gravity changes, temperature changes, etc.) would vary with periods of one (or half) solar day.
| Vse rasprostranennye prichiny oshibok (izmeneniya sily tyazhesti,
izmeneniya temperatury i t.d.) dolzhny menyat'sya s periodom v odni (ili
polovinu) solnechnyh sutok.
|
208
| Tidal influences due to the Moon would have periods that could
also be easily distinguished from the effects predicted by Courvoisier.
| Prilivnye vliyaniya Luny budut imet' periody, kotorye takzhe mogut byt' legko otlichimy ot effektov, predskazannyh Kurvuaz'e.
|
209
| Besides that, the data used by Courvoisier was obtained with
different instruments at different places, and covered a time span of 80
years.
| Krome togo, dannye, ispol'zuemye Kurvuaz'e, byli polucheny s
pomosh'yu razlichnyh instrumentov v raznyh mestah, i ohvatyvali promezhutok
vremeni v 80 let.
|
210
| The results presented by Courvoisier are therefore highly impressive and cannot be dismissed lightly.
| Rezul'taty, predstavlennye Kurvuaz'e, sledovatel'no, ves'ma vpechatlyaet i ne mogut byt' legko otvergnuty.
|
211
|
|
|
212
|
|
|
213
| In the first method used by Courvoisier, the stars work as mere point-like light sources.
| V pervom metode, kotoryi ispol'zoval Kurvuaz'e, zvezdy ispol'zuyutsya kak prostye tochechnye istochniki sveta.
|
214
| There is nothing peculiarly astronomical in the observed
effect because, according to Courvoisier's theory, this was ascribed to
the principle of the moving mirror.
| Tam net nichego specificheski astronomicheskogo v nablyudaemom
effekte, potomu chto, soglasno teorii Kurvuaz'e, eto bylo opisano kak
princip dvizhushegosya zerkala.
|
215
| Therefore, similar effects should occur for terrestrial light sources, too.
| Takim obrazom, podobnye effekty dolzhny takzhe voznikat' i dlya nazemnyh istochnikov sveta.
|
216
|
|
|
217
| Accordingly, Courvoisier was led to build a new instrument: an optical device for measuring absolute motion (.... 6).21 He used two small telescopes that
were placed in an underground room where the temperature was fairly constant.
| Sootvetstvenno, Kurvuaz'e eto privelo k sozdaniyu novogo
instrumenta:. opticheskogo ustroistva dlya izmereniya absolyutnogo dvizheniya
(ris. 6) 21 On ispol'zoval dva nebol'shih teleskopa, kotorye
byli razmesheny v podzemnom pomeshenii, gde temperatura byla dovol'no
postoyannoi.
|
218
| Both telescopes pointed obliquely (zenithal distance = 60) to a mercury mirror that was placed between them.
| Oba teleskopa byli nakloneny (zenitnoe rasstoyanie = 60 ) k rtutnomu zerkalu, kotoroe bylo pomesheno mezhdu nimi.
|
219
| They were mounted in a vertical plane in the East-West direction.
| Oni byli ustanovleny v vertikal'noi ploskosti v napravlenii Vostok-Zapad.
|
220
| One of the telescopes had a small electric light close to its
reticule, and this was the light source that was observed from the
second telescope.
| Odin iz teleskopov imel nebol'shoe elektricheskoe osveshenie
vblizi ot ee kresta vizirnyh nitei, i eto bylo istochnikom sveta, kotoryi
nablyudalsya vo vtoroi teleskop.
|
221
| Both telescopes were first adjusted so that it was possible to
see the reflection of the illuminated reticule of the first telescope
from the second telescope.
| Oba teleskopa snachala byli nastroeny takim obrazom, chtoby mozhno
bylo uvidet' otrazhenie osveshennoi setki iz pervoi truby ot vtorogo
teleskopa.
|
222
| They were then fastened in those directions.
| Zatem oni byli zakrepleny v etih napravleniyah.
|
223
| Of course, the angles of the telescopes with the local vertical were sensibly equal.
| Konechno, ugly teleskopov s mestnoi vertikali byli ochevidno ravny.
|
224
| The experiment did not try to measure any difference between those angles.
| Eksperiment ne pytalsya izmerit' kakoe-libo razlichie mezhdu etimi uglami.
|
225
| It attempted to detect small periodical changes of the position
of the image of the first telescope reticule as observed from the
second one.
| On byl prednaznachen dlya obnaruzheniya nebol'shih periodicheskih
izmenenii v polozhenii kresta vizirnyh nitei pervogo teleskopa, pri ih
nablyudenii iz vtorogo teleskopa.
|
226
| The apparent motion of {16} the reticule
was measured with the aid of the ocular micrometer of the second telescope.
| Vidimoe dvizhenie perekrestiya bylo izmereno s pomosh'yu okulyarnogo mikrometra vtorogo teleskopa.
|
227
|
|
|
228
| Using this device, Courvoisier made two series of observations in 1926 and 1927.
| S pomosh'yu etogo ustroistva Kurvuaz'e vypolnil dve serii nablyudenii v 1926 i 1927 godah.
|
229
| Afterwards, he had a special instrument built for this purpose, and made a third series of observations in 1932.
| Vposledstvii, on postroil special'nyi instrument dlya etoi celi, i vypolnil tret'yu seriyu nablyudenii v 1932 godu.
|
230
|
|
|
231
| In his first experiments the telescopes were placed in a vertical plane in the East-West direction.
| V ego pervyh eksperimentah teleskopy byli razmesheny v vertikal'noi ploskosti v napravlenii vostok-zapad.
|
232
| In 1926 and 1928 Courvoisier built two new instruments that could be rotated.
| V 1926 i 1928 godah Kurvuaz'e postroil dva novyh instrumenta, kotorye mogli vrashat'sya.
|
233
| He expected that this would improve his measurements.
| On ozhidal, chto eto budet sposobstvovat' uluchsheniyu ego izmerenii.
|
234
| However, he found out that it was impossible to compare
measurements when the device was rotated, due to mechanical problems,
and the instruments could only be effectively used in a fixed position.
| Tem ne menee, on vyyasnil, chto okazalos' nevozmozhnym sravnivat'
izmereniya, kogda ustroistvo povorachivalos', iz-za mehanicheskih problem, i
instrumenty mogut byt' effektivno ispol'zovany tol'ko v fiksirovannom
polozhenii.
|
235
|
|
|
236
| The equation used to compute the effect was similar to that
used in the case of the observation of stars, but instead of the North
component of the speed, it was necessary to take into account the West
component.
| Uravnenie, ispol'zuemoe dlya vychisleniya effekta, byl analogichno
tomu, kotoroe ispol'zovalos' v sluchae nablyudeniya zvezd, no vmesto
severnoi komponenty skorosti, bylo neobhodimo prinimat' vo vnimanie
zapadnuyu komponentu.
|
237
| As in the former case, the resulting equation has a constant
term plus variable components with periods of one sidereal day and half
sidereal day.
| Kak i v predydushem sluchae, rezul'tiruyushee uravnenie imeet
postoyannyi chlen plyus peremennye sostavlyayushie s periodami v odni zvezdnye
sutki i polovinu zvezdnyh sutok.
|
238
|
|
|
239
|
|
240
| .... 6. Courvoisiers double telescope apparatus for measuring the motion of the Earth through the ether.
| Ris. 6. Dvoinoi teleskop Kurvuaz'e apparat dlya izmereniya dvizheniya Zemli cherez efir.
|
241
|
|
|
242
| {17} Table 1. Measurements made by Courvoisier
in 1926 with the double telescope instrument.
| Tablica 1. Izmereniya, vypolnennye v 1926 godu Kurvuaz'e s instrumentom v vide dvoinogo teleskopa.
|
243
|
First series:
|
Sidereal time 0
| (z z') + constant
| number of measurements
|
0.32 h
| 0.08″
| 21
|
1.23 h
| + 0.04″
| 64
|
2.45 h
| + 0.07″
| 14
|
3.31 h
| 0.38″
| 56
|
4.28 h
| 0.38″
| 14
|
5.28 h
| 0.57″
| 68
|
7.37 h
| 0.58″
| 55
|
9.29 h
| 0.57″
| 64
|
11.24 h
| 0.24″
| 30
|
12.73 h
| 0.04″
| 20
|
21.91 h
| + 0.21″
| 38
|
23.32 h
| + 0.08″
| 45 |
|
Pervaya seriya:
|
Zvezdnoe vremya θ
| (z z′) + konstanta
| Kolichestvo izmerenii
|
0,32 ch
| 0.08 ″
| 21
|
1,23 ch
| + 0.04 ″
| 64
|
2,45 ch
| + 0,07 ″
| 14
|
3,31 ch
| 0,38 ″
| 56
|
4,28 ch
| 0,38 ″
| 14
|
5,28 ch
| 0,57 ″
| 68
|
7,37 ch
| 0,58 ″
| 55
|
9,29 ch
| 0,57 ″
| 64
|
11,24 ch
| 0,24 ″
| +30
|
12,73 ch
| 0,04 ″
| 20
|
21,91 ch
| + 0,21 ″
| 38
|
23,32 ch
| + 0,08 ″
| 45 |
|
244
|
|
|
245
| Table 2. Measurements made by Courvoisier in 1927 with the double telescope instrument.
| Tablica 2. Izmereniya, vypolnennye v 1927 godu Kurvuaz'e s instrumentom v vide dvoinogo teleskopa.
|
246
|
Second series:
|
Sidereal time 0
| (z z') + constant
| number of measurements
|
2.9 h
| + 1.54″
| 4
|
7.3 h
| + 0.28″
| 6
|
8.2 h
| + 0.28″
| 7
|
9.1 h
| 0.01″
| 7
|
10.1 h
| + 0.23″
| 6
|
11.4 h
| + 0.56″
| 5
|
12.3 h
| + 0.60″
| 5
|
13.7 h
| + 0.52″
| 7
|
15.5 h
| + 0.84″
| 6
|
17.9 h
| + 0.88″
| 7
|
19.9 h
| + 0.80″
| 7 |
|
Vtoraya seriya:
|
Zvezdnoe vremya θ
| (z z′) + konstanta
| Kolichestvo izmerenii
|
2,9 ch
| + 1.54
| 4
|
7,3 ch
| + 0,28″
| 6
|
8,2 ch
| + 0,28″
| 7
|
9,1 ch
| 0,01″
| 7
|
10.1 ch
| + 0,23″
| 6
|
11.4 ch
| + 0,56″
| 5
|
12.3 ch
| + 0,60″
| 5
|
13,7 ch
| + 0,52″
| 7
|
15,5 ch
| + 0,84″
| 6
|
17,9 ch
| + 0,88″
| 7
|
19,9 ch
| + 0,80″
| 7 |
|
247
|
|
|
248
| {18} The first series comprised 489 observations,
and the second series only 67 observations.
| Pervaya seriya sostavila 489 nablyudenii, a vtoraya tol'ko 67 serii nablyudenii.
|
249
| From the first series, Courvoisier computed the following values:
| Iz pervoi serii Kurvuaz'e vychislil sleduyushie znacheniya:
|
250
| A = 70 6; D = +33 11; v = 493 54 km/s
| A = 70 6; D = +33 11; v = 493 54 km/s
|
251
| From the second series, he obtained the results:
| Iz vtoroi serii on poluchil takie rezul'taty:
|
252
| A = 22 6; D = +72 11; v = 606 45 km/s
| A = 22 6; D = +72 11; v = 606 45 km/s
|
253
| Of course, the results obtained from the first series of
measurements seemed more reliable than those from the second series, and
they exhibited a closer agreement with former measurements.
| Konechno, rezul'taty, poluchennye v pervoi serii izmerenii
predstavlyayutsya bolee nadezhnym, chem ot vtorogo serii, i oni pokazali
bolee blizkoe sootvetstvie s prezhnimi izmereniyami.
|
254
|
|
|
255
| Notice that, although those measurements attempted to detect
the same kind of effects as the astronomical observations - that is, a
difference between angle of incidence and angle of reflection in a
moving mirror - the star observations used the North-South direction,
and the cave experiments employed the East-West direction.
| Obratite vnimanie, chto, hotya eti izmereniya delali popytku
obnaruzhit' takie zhe posledstviya, chto i astronomicheskie nablyudeniya to
est', raznicu mezhdu uglom padeniya i uglom otrazheniya v dvizhushemsya zerkale
zvezdnye nablyudeniya ispol'zovali napravlenie sever-yug, a eksperimenty
v zakrytom pomeshenii ispol'zovali napravlenie vostok-zapad.
|
256
| The equations were different, and nevertheless Courvoisier
obtained a nice agreement between the new device and the former results.
| Uravneniya byli raznye, i tem ne menee Kurvuaz'e poluchil horoshee soglasie mezhdu novym ustroistvom i prezhnimi rezul'tatami.
|
257
|
|
|
258
|
|
|
259
| In 1928 Courvoisier built another device to measure the speed of the Earth using the principle of the moving mirror.
| V 1928 g. Kurvuaz'e postroil drugoe ustroistvo dlya izmereniya skorosti Zemli s ispol'zovaniem principa dvizhushegosya zerkala.
|
260
| Instead of using two telescopes, he used a single telescope, with two perpendicular mirrors in front of its objective (.... 7).
| Vmesto primeneniya dvuh teleskopov, on ispol'zoval odin
teleskop, s dvumya perpendikulyarnymi zerkalami pered ego ob'ektivom (ris.
7).
|
261
| The body of the telescope was placed in a horizontal position.
| Truba teleskopa byla razmeshena v gorizontal'nom polozhenii.
|
262
| The mirrors were adjusted so that it was possible to observe
the reflected image of the thread micrometer of the telescope in close
coincidence with the real micrometer thread.
| Zerkala byli otregulirovany takim obrazom, chtoby mozhno bylo
nablyudat' otrazhennoe izobrazhenie niti mikrometra teleskopa v blizkom
sovpadenii s real'noi nit'yu mikrometra.
|
263
| He predicted that the relative position of the image and the
thread should undergo periodic fluctuations, and computed the predicted
effect.
| On predskazal, chto otnositel'noe polozhenie izobrazheniya i niti
dolzhno podvergat'sya periodicheskim kolebaniyam, i vychislil predskazannyi
effekt.
|
264
|
|
|
265
| From April to June 1928 Courvoisier obtained a series of 53
measurements, both in the North-South and in the East-West directions,
and he computed the following values:
| S aprelya po iyun' 1928 g. Kurvuaz'e byla poluchena seriya iz 53
izmerenii, kak v napravlenii sever-yug, tak i vostok-zapad, i on vychislil
sleduyushie znacheniya:
|
266
| A = 74 1; D = +36 1; v = 496 10 km/s
| A = 74 1; D = +36 1; v = 496 10 km/s
|
267
| The first series of measurements was made from 31 July and 6
August 1926, with observations spanning between 3 and 20 o'clock
sidereal time; the second one, from 28 February to 29 May 1927, with
observations covering the period from 21 to 13 o'clock sidereal time.
| Pervaya seriya izmerenii byla provedena s 31 iyulya i 6 avgusta
1926 goda, s nablyudeniyami, ohvatyvayushimi ot 3 do 20 chasov zvezdnogo
vremeni; vtoraya seriya s 28 fevralya po 29 maya 1927 goda, s nablyudeniyami
za period s 21 do 13 chasov zvezdnogo vremeni.
|
268
| Both series comprised more than 500 measurements.
| Obe serii sostavili bolee 500 izmerenii.
|
269
| Tables 1 and 2 shows the mean results obtained by Courvoisier for each sidereal time:
| V tablicah 1 i 2 pokazany srednie rezul'taty, poluchennye Kurvuaz'e dlya kazhdogo perioda zvezdnogo vremeni:
|
270
|
|
|
271
|
|
272
| .... 7. Courvoisiers coupled mirror device for measuring the motion of the Earth through the ether.
| Ris. 7. Ustroistvo Kurvuaz'e so svyazannymi zerkalami dlya izmereniya dvizheniya Zemli otnositel'no efira.
|
273
|
|
|
274
| {19} Courvoisiers new experiment was probably
suggested by a similar arrangement that had been used by Esclangon in 1927.23
| Novyi eksperiment Kurvuaz'e byl, veroyatno, podskazan podobnym ustroistvom, kotoroe bylo ispol'zovano Esklangonom v 1927 godu. 23
|
275
| The French astronomer used two mirrors, but light underwent three reflections (.... 8).
| Francuzskii astronom ispol'zoval dva zerkala, no svet ispytyval tri otrazheniya (ris. 8).
|
276
| The maximum effect occurred at 3 h or 15 h sidereal time, corresponding to A = 45 or 225.
| Maksimal'nyi effekt poyavlyalsya dlya 3 ch ili 15 ch zvezdnogo vremeni, chto sootvetstvuet A = 45 ili 225 .
|
277
| Esclangon did not compute the speed of the Earth through the
ether indeed, he did not even provide a definite interpretation of the
phenomenon.
| Esklangon ne vychislyal skorost' Zemli cherez efir bolee togo, on dazhe ne obespechivayut opredelennuyu interpretaciyu yavleniya.
|
278
|
|
279
| .... 8. Esclangons coupled mirror device for measuring the
motion of the Earth through the ether (a), and a graphical
representation of his results (b), showing the observed angular
fluctuations as a function of sidereal time.
| Ris. 8. Ustroistvo Esklangona so svyazannymi zerkalami dlya
izmereniya dvizheniya Zemli cherez efir (a) i graficheskoe predstavlenie ego
rezul'tatov (b), pokazyvayushih nablyudaemye uglovye kolebaniya v
zavisimosti ot zvezdnogo vremeni.
|
280
|
|
|
281
|
|
|
282
| As described above, Courvoisier's second attempt to measure the
absolute velocity of the Earth was grounded upon his analysis of the
Lorentz contraction of the Earth (.... 9).
| Kak opisano vyshe, vtoraya popytka Kurvuaz'e izmerit' absolyutnuyu
skorost' Zemli byla osnovana na ego analize sokrasheniya Lorenca dlya Zemli
(ris. 9).
|
283
| In this case, Courvoisier supposed that the local vertical
would undergo a change, due to the Lorentz contraction of the Earth, and
this change would be observable as a periodical fluctuation in the
angle between the North Pole and the zenith, as a function of the
sidereal time.
| V etom sluchae Kurvuaz'e predpolozhil, chto mestnaya vertikal'
preterpit izmeneniya v svyazi s sokrasheniem Lorenca dlya Zemli, i eto
izmenenie budet nablyudat'sya kak periodicheskoe kolebanie ugla mezhdu
Severnym polyusom i zenitom, kak funkciya zvezdnoe vremya.
|
284
|
|
|
285
| Courvoisier's theoretical analysis led him to predict that the
variation of the zenithal distance Δz of a star close to the North Pole
would obey the approximate relation:
| Teoreticheskii analiz Kurvuaz'e privel ego k predskazaniyu, chto
izmenenie zenitnogo rasstoyaniya Δz blizosti zvezdy k Severnomu polyusu
dolzhny podchinyat'sya priblizhennomu sootnosheniyu:
|
286
| Δz = 1/2 αβ (11)
| Δz = 1/2 αβ (11)
|
287
| {20} There are some special observational
difficulties in this second method.
| Est' neskol'ko specificheskih trudnostei v nablyudenii dlya etogo vtorogo sposoba.
|
288
| If it were possible to observe a star laying exactly in the
direction of the celestial North Pole, the observation would be quite
simple.
| Esli by mozhno bylo nablyudat' zvezdu, lezhashuyu tochno v
napravlenii nebesnogo Severnogo polyusa, nablyudenie okazhetsya dovol'no
prostym.
|
289
| However, if the star is not exactly in the direction of the
pole, its zenithal distance will depend on the sidereal time of the
observation.
| Odnako, esli zvezda nahoditsya ne tochno v napravlenii polyusa, ee
zenitnoe rasstoyanie budet zaviset' ot zvezdnogo vremeni nablyudeniya.
|
290
| This classical large effect would have, therefore, a period of
one sidereal day and would interfere with any attempt to measure any
influence due to the motion through the ether with a period of one
sidereal day.
| Etot klassicheskii bol'shoi effekt imeet, takim obrazom, period
odni zvezdnye sutki, i on dolzhen pomeshat' lyuboi popytke izmerit'
kakoe-libo vliyanie za schet dvizheniya cherez efir s periodom odin zvezdnyi
den'.
|
291
| Other interfering effects, such as temperature changes, vary
with a period of about one solar day, and they are very large and
irregular.
| Drugie meshayushie effekty, takie kak izmeneniya temperatury,
izmenyayutsya s periodom priblizitel'no odin solnechnyi den', i oni ochen'
bol'shie i neregulyarnye.
|
292
| For those reasons, Courvoisier gave up the attempt of finding
the amplitude of the sidereal day effect, and only computed the half
sidereal day effect.
| Po etim prichinam, Kurvuaz'e ostavil popytku nahozhdeniya
amplitudy effekta za zvezdnye sutki, i tol'ko vychislil effekt, svyazannyi
s polovinoi zvezdnyh sutok.
|
293
| It was impossible, therefore, to find all parameters, and he
assumed a value of 40 for the declination, and computed the speed and
right ascension of the motion of the Earth relative to the ether.
| Bylo nevozmozhno, takim obrazom, naiti vse parametry, i on
predpolozhil znachenie 40 dlya skloneniya, i vychislil skorost' i pryamoe
voshozhdenie dvizheniya Zemli otnositel'no efira.
|
294
| Dropping out the component corresponding to the period of one sidereal day, he obtained the following equation:
| Otbrosiv komponentu, sootvetstvuyushuyu periodu v odin zvezdnyi den', on poluchil sleduyushee uravnenie:
|
295
| Δz = (1/4)(v/c)2.sin 2ϕ (const.
| Δz = (1/4)(v/c)2.sin 2ϕ (const.
|
296
| cos2D.cos2(θA)] (12)
| cos2D.cos2(θA)] (12)
|
297
|
|
298
| {21} .... 9.
| Ris. 9.
|
299
| According to Courvoisier, the Lorentz contraction of the Earth
and of optical instruments could have a small observable influence on
astronomical observations and terrestrial experiments.
| Soglasno Kurvuaz'e, sokrashenie Lorenca dlya Zemli i opticheskih
priborov mozhet imet' nebol'shoe vliyanie na astronomicheskie nablyudeniya i
nazemnye eksperimenty.
|
300
| Using the data he had already obtained from 1914 to 1917, and
combining those results with other measurements he made in 19211922 and
1925-1926, with the same instrument, Courvoisier obtained the following
result:
| Ispol'zuya dannye, kotorye on uzhe poluchil s 1914 po 1917 gg. i
ob'ediniv eti rezul'taty s drugimi izmereniyami, kotorye on sdelal v
19211922 i 19251926 gg. s tem zhe instrumentom, Kurvuaz'e poluchil
sleduyushii rezul'tat:
|
301
| A = 74 3; [D = +40]; v = 587 48 km/s
| A = 74 3; [D = +40]; v = 587 48 km/s
|
302
| He also analyzed measurements that had been obtained in routine
observations at the Paris observatory, in the period 1899-1901. All
those series of observations exhibited similar variations with a period
of 12 sidereal hours.
| On takzhe proanaliziroval izmereniya, kotorye byli polucheny v
regulyarnyh nablyudeniyah v Parizhskoi observatorii v period 18991901 gg.
Vse eti serii nablyudenii pokazali pohozhie variacii s periodom 12
zvezdnyh chasov.
|
303
| Assuming a value of 40 for the declination, he obtained the following results:
| Predpolozhiv znachenie 40 dlya skloneniya, on poluchil sleduyushie rezul'taty:
|
304
| A = 70 11; [D = +40]; v = 810 166 km/s
| A = 70 11; [D = +40]; v = 810 166 km/s
|
305
| Afterwards Courvoisier also computed the motion of the Earth
using measurements from Breslau (19231925 and 19331935) and from
München (1927-1931).
| Vposledstvii Kurvuaz'e takzhe vychislil dvizhenie Zemli po izmereniyam v Breslavle (19231925 i 19331935) i v Myunhene (19271931).
|
306
| Taking into account all the observations, he obtained the following final result:
| Prinimaya vo vnimanie vse nablyudeniya, on poluchil sleduyushii okonchatel'nyi rezul'tat:
|
307
| A = 65 10; [D = +40]; v = 574 97 km/s
| A = 65 10; [D = +40]; v = 574 97 km/s
|
308
| {22}
|
|
309
| The effects predicted by Courvoisier as a consequence of the
Lorentz contraction of the Earth should depend on the latitude of the
observatory.
| Effekty, predskazannye Kurvuaz'e kak sledstvie sokrashenie Lorenca dlya Zemli, dolzhny zaviset' ot shiroty observatorii.
|
310
| For that reason, if the same set of stars was observed from two
observatories at very different latitudes, there should exist a
systematic difference between the measured declinations of the stars, as
a function of sidereal time.
| Po etoi prichine, esli tot zhe nabor zvezd nablyudalsya iz dvuh
observatorii, raspolozhennyh na ochen' raznyh shirotah, dolzhny sushestvovat'
sistematicheskie razlichiya mezhdu izmerennymi skloneniyami zvezd, kak
funkciya ot zvezdnogo vremeni.
|
311
| To test the existence of this effect, Courvoisier analyzed the catalogues containing measurements made at Heidelberg (ϕ1 = + 49.24) and at Cape Town,
South Africa (ϕ2 = 33.48).
| Chtoby proverit' sushestvovanie etogo effekta, Kurvuaz'e
proanaliziroval katalogi, soderzhashie izmereniya, vypolnennye v
Geidel'berge (ϕ1 = + 49.24) i v Keiptaune, Yuzhnaya Afrika (ϕ2 = 33.48).
|
312
| Let D1 be the declination of some star measured from Heidelberg, and D2 the declination of the same star measured from Cape of Good Hope.
| Pust' D 1 sklonenie nekotoroi zvezdy, izmerennoe v Geidel'berge, a D 2 sklonenie toi zhe zvezdy, izmerennoe na myse Dobroi Nadezhdy.
|
313
| Each declination, according to Courvoisier's analysis, undergoes a periodical change:
| Kazhdoe sklonenie, soglasno analizu Kurvuaz'e, preterpevaet periodicheskie izmeneniya:
|
314
| Δz1 = 1/2 α1β1 Δz2 = 1/2 α2β2
(13)
| Δz1 = 1/2 α1β1 Δz2 = 1/2 α2β2
(13)
|
315
| Those effects are not equal; therefore, the difference between
the declinations measured at the two observatories should undergo a
periodical change:
| Eti effekty ne ravny, i poetomu raznica mezhdu skloneniyami,
izmerennymi dlya dvuh observatorii, dolzhna podvergat'sya periodicheskomu
izmeneniyu:
|
316
| D1 D2 = 1/2 (α1β1 α2β2) (14)
| D1 D2 = 1/2 (α1β1 α2β2) (14)
|
317
| Using the typical values A=75 and D=40 obtained in former
measurements, and taking into account the latitudes of Heidelberg and
Cape Town, Courvoisier predicted that there should exist a difference
between the measured declinations of the stars that should depend on
their right ascension a:
| Ispol'zuya tipichnye znacheniya A=75 i D=40, poluchennye v
predydushih izmereniyah i s uchetom shiroty Geidel'berge i Keiptauna,
Kurvuaz'e predskazal, chto dolzhna sushestvovat' raznica mezhdu izmerennym
skloneniem zvezd, kotorye dolzhny zaviset' ot ih pryamogo voshozhdeniya:
|
318
| D1 D2 = + 0.16′′ 0.18′′.
| D1 D2 = + 0.16′′ 0.18′′.
|
319
| cos (α 5h) 0.16′′.
| cos (α 5h) 0.16′′.
|
320
| cos 2(α 5h) (15)
| cos 2(α 5h) (15)
|
321
| The amplitude was obtained by comparing the astronomical data of the two observatories, and led to v =750 km/s.
| Amplituda byla poluchena putem sopostavleniya astronomicheskih dannye dvuh observatorii, i privela k V = 750 km / s.
|
322
| Table 3 contains Courvoisiers comparison between the observed and predicted values of D1D2.
| V tablice 3 privedeny sravneniya Kurvuaz'e v period mezhdu nablyudaemym i prognoziruemym znacheniyam D1D2.
|
323
| The third column of the table presented the observed values
corrected for null declination, in order to avoid classical errors due
to atmospheric refraction, etc.
| V tret'em stolbce tablicy predstavleny nablyudaemye znacheniya s
popravkoi na nulevoe sklonenie, dlya togo, chtoby izbezhat' klassicheskih
oshibok, svyazannyh s atmosfernoi refrakciei i t.d.
|
324
| There is a better agreement between the theoretical prediction and the corrected values than with the raw data.
| Sushestvuet luchshee soglasie mezhdu teoreticheskimi predskazaniyami i skorrektirovannymi znacheniyami, chem s syrymi dannymi.
|
325
|
|
|
326
| In his analysis of the second method, Courvoisier assumed that
the Lorentz contraction of the Earth produces a local periodical change
of the direction of the gravitational field.
| V svoem analize vtorogo sposoba Kurvuaz'e predpolagal, chto
sokrashenie Lorenca dlya Zemli sozdaet lokal'noe periodicheskoe izmenenie
napravleniya gravitacionnogo polya.
|
327
| This effect was not compensated by changes in the direction of the astronomical instruments.
| Etot effekt ne kompensiruetsya za schet izmeneniya napravleniya astronomicheskih instrumentov.
|
328
| Therefore, he was led to think that the effect could also be detected in an experiment using a terrestrial light source.
| Takim obrazom, on prishel k mneniyu, chto effekt mozhet byt' takzhe
obnaruzhen v hode eksperimenta s ispol'zovaniem nazemnogo istochnika
sveta.
|
329
| {23} He placed a mercury mirror directly
below the observatory meridian circle and pointed the telescope downward.
| On pomestil rtutnoe zerkalo neposredstvenno pod meridian observatorii i napravil teleskopa vniz.
|
330
| The instrument was then delicately adjusted in such a way that
it was possible to observe the reflected image of the micrometer threads
superimposed to the real threads.
| Pribor byl zatem tonko otregulirovan takim obrazom, chtoby mozhno
bylo nablyudat' otrazhennoe izobrazhenie nitei mikrometra, nalozhennye na
real'nye niti.
|
331
| The position of the telescope was locked, and observations were
made of the relative displacement of the micrometer thread and its
image.
| Polozhenie teleskopa bylo zafiksirovano, i byli vypolneny nablyudeniya otnositel'nogo smesheniya niti mikrometra i ee otrazheniya.
|
332
| He predicted the following deflection in the East-West direction:
| On predskazal sleduyushie otkloneniya v napravlenii vostok-zapad:
|
333
| Δz = (1/4)(v/c)2.
| Δz = (1/4)(v/c)2.
|
334
| [sin ϕ.sin2D.sin (θA) + cos ϕ.cos2D.sin 2(θA)] (16)
| [sin ϕ.sin2D.sin (θA) + cos ϕ.cos2D.sin 2(θA)] (16)
|
335
| Table 3.
| Tablica 3.
|
336
| Difference between the declinations of a star (D1D2), observed from two distant observatories, as a function of sidereal time α.
| Razlichie mezhdu skloneniyami zvezd (D1D2), nablyudaemoe iz dvuh udalennyh observatorii, kak funkciya ot zvezdnogo vremeni α.
|
337
|
α | D1D2
|
| observed
| observed (corrected)
| prediction
|
0 h
| + 0.35′′
| + 0.35′′
| + 0.26′′
|
1 h
| + 0.21′′
| + 0.21′′
| + 0.16′′
|
2 h
| + 0.01′′
| + 0.01′′
| + 0.04′′
|
3 h
| 0.07′′
| 0.07′′
| 0.07′′
|
4 h
| 0.17′′
| 0.17′′
| 0.16′′
|
5 h
| + 0.03′′
| + 0.03
| 0.17′′
|
6 h
| + 0.17′′
| + 0.17
| 0.14′′
|
7 h
| 0.03′′
| 0.03′′
| 0.06′′
|
8 h
| + 0.07′′
| + 0.07′′
| + 0.04′′
|
9 h
| + 0.10′′
| + 0.10′′
| + 0.14′′
|
10 h
| + 0.08′′
| + 0.08′′
| + 0.25′′
|
11 h
| + 0.09′′
| + 0.09′′
| + 0.32′′
|
12 h
| + 0.29′′
| + 0.29′′
| + 0.34′′
|
13 h
| + 0.32′′
| + 0.35′′
| + 0.32′′
|
14 h
| + 0.29′′
| + 0.39′′
| + 0.29′′
|
15 h
| 0.04′′
| + 0.22′′
| + 0.25′′
|
16 h
| 0.21′′
| + 0.13′′
| + 0.20′′
|
17 h
| 0.23′′
| + 0.18′′
| + 0.19′′
|
18 h
| 0.29′′
| + 0.12′′
| + 0.20′′
|
19 h
| 0.31′′
| + 0.10′′
| + 0.23′′
|
20 h
| 0.17′′
| + 0.17′′
| + 0.29′′
|
21 h
| + 0.04′′
| + 0.30′′
| + 0.33′′
|
22 h
| + 0.26′′
| + 0.36′′
| + 0.34′′
|
23 h
| + 0.38′′
| + 0.41′′
| + 0.32′′ |
|
α | D1D2
|
| Nablyudenie
| Nablyudenie (skorrektirovano)
| Predskazanie
|
0 ch
| + 0.35′′
| + 0.35′′
| + 0.26′′
|
1 ch
| + 0.21′′
| + 0.21′′
| + 0.16′′
|
2 ch
| + 0.01′′
| + 0.01′′
| + 0.04′′
|
3 ch
| 0.07′′
| 0.07′′
| 0.07′′
|
4 ch
| 0.17′′
| 0.17′′
| 0.16′′
|
5 ch
| + 0.03′′
| + 0.03
| 0.17′′
|
6 ch
| + 0.17′′
| + 0.17
| 0.14′′
|
7 ch
| 0.03′′
| 0.03′′
| 0.06′′
|
8 ch
| + 0.07′′
| + 0.07′′
| + 0.04′′
|
9 ch
| + 0.10′′
| + 0.10′′
| + 0.14′′
|
10 ch
| + 0.08′′
| + 0.08′′
| + 0.25′′
|
11 ch
| + 0.09′′
| + 0.09′′
| + 0.32′′
|
12 ch
| + 0.29′′
| + 0.29′′
| + 0.34′′
|
13 ch
| + 0.32′′
| + 0.35′′
| + 0.32′′
|
14 ch
| + 0.29′′
| + 0.39′′
| + 0.29′′
|
15 ch
| 0.04′′
| + 0.22′′
| + 0.25′′
|
16 ch
| 0.21′′
| + 0.13′′
| + 0.20′′
|
17 ch
| 0.23′′
| + 0.18′′
| + 0.19′′
|
18 ch
| 0.29′′
| + 0.12′′
| + 0.20′′
|
19 ch
| 0.31′′
| + 0.10′′
| + 0.23′′
|
20 ch
| 0.17′′
| + 0.17′′
| + 0.29′′
|
21 ch
| + 0.04′′
| + 0.30′′
| + 0.33′′
|
22 ch
| + 0.26′′
| + 0.36′′
| + 0.34′′
|
23 ch
| + 0.38′′
| + 0.41′′
| + 0.32′′ |
|
338
| {24} Courvoisier made two series of observations:
22-24 October and 22-25 November 1922.
| Kurvuaz'e vypolnil dve serii nablyudenii: 2224 oktyabrya i 2225 noyabrya 1922 goda.
|
339
| He noticed that temperature changes affected the position of
the telescope, and that this influence had to be taken into account.
| On zametil, chto izmeneniya temperatury povliyalo na polozhenie teleskopa, prichem vliyanie eto dolzhno byt' prinyato vo vnimanie.
|
340
| From the uncorrected observed measurements he computed the following values:
| Iz nablyudaemyh neispravlennyh izmerenii on vychislil sleduyushie znacheniya:
|
341
| A = 74 10; D = +67 13; v = 920 73 km/s
| A = 74 10; D = +67 13; v = 920 73 km/s
|
342
| Applying a temperature correction, he obtained the following results:
| Primenyaya korrekciyu temperatury, on poluchil sleduyushie rezul'taty:
|
343
| A = 98 7; D = +25 11; v = 500 47 km/s
| A = 98 7; D = +25 11; v = 500 47 km/s
|
344
| This experiment was repeated by August Kopff, of the Heidelberg observatory, from 10 to 29 June 1923.
| Etot eksperiment byl povtoren Avgustom Kopfom iz Geidel'bergskoi observatorii s 10 po 29 iyunya 1923 goda.
|
345
| As in the case of Courvoisier's experiment, there was a strong
effect due to temperature changes (temperature varied between +6C and
+17C).
| Kak i v sluchae eksperimenta Kurvuaz'e, ne bylo sil'nogo effekta
v rezul'tate izmeneniya temperatury (temperatura kolebalas' ot +6 S do
+17C).
|
346
| Courvoisier analyzed Kopff s data assuming the values A = 75 and D = +40.
| Kurvuaz'e proanaliziroval dannye Kopfa, prinyav znacheniya A = 75 i D = +40.
|
347
| After applying temperature corrections, he obtained a speed of 753 57 km/s.
| Posle primeneniya temperaturnyh popravok, on poluchil skorost' 753 57 km/s.
|
348
|
|
|
349
| Courvoisier also attempted to detect the motion of the Earth relative to the ether by other methods.
| Kurvuaz'e takzhe popytalsya obnaruzhit' dvizhenie Zemli otnositel'no efira drugimi metodami.
|
350
| He regarded the positive result of the nadir observation method
as a confirmation of his hypothesis that the Lorentzs contraction
produced an observable periodical change of the local vertical.
| On schital polozhitel'nymi rezul'taty nablyudeniya nadira kak
podtverzhdenie svoei gipotezy, chto sokrashenie Lorenca proizvodit
nablyudaemye periodicheskie izmeneniya mestnoi vertikali.
|
351
| He soon devised other ways of observing such an effect.
| Vskore on razrabotal drugie sposoby nablyudeniya takogo effekta.
|
352
|
|
|
353
| One of the instruments he used was a plumb line attached to one of the columns of the Babelsberg observatory.
| Odnim iz ispol'zuemyh im instrumentov byl otves, prikreplennyi k odnoi iz opor Babel'sbergskoi observatorii.
|
354
| The main body of the plumb line was a metallic rod, 95 cm long.
| Osnovnym telom linii otvesa byl metallicheskii sterzhen', 95 sm v dlinu.
|
355
| At its lower end there was a mark that was illuminated and projected upon a wall.
| Na ego nizhnem konce byla otmetka, kotoraya byla osveshena i proecirovalas' na stenu.
|
356
| It was possible to observe deflections of about 0.05″ of the direction of the plumb line, in the East-West direction.24
| Mozhno bylo nablyudat' otkloneniya napravleniya otvesa primerno na 0,05″ v napravlenii vostok-zapad. 24
|
357
| Measurements made in 1925 with this instrument led to a speed of the Earth of about 400 km/s, assuming A = 75 and D = +40.
| Izmereniya, provedennye v 1925 godu s etim instrumentom pokazali skorost' Zemli okolo 400 km/s, pri A = 75 i D = +40 .
|
358
| In 1931 Courvoisier improved this instrument observing the motion of its tip with the aid of a microscope (.... 10).
| V 1931 godu Kurvuaz'e usovershenstvoval etot instrument, nablyudaya za dvizheniem ego konca s pomosh'yu mikroskopa (ris. 10).
|
359
| Now he was able to compute the three parameters of the Earth's motion, obtaining:
| Teper' on byl v sostoyanii vychislit' tri parametra dvizheniya Zemli, poluchiv:
|
360
| A = 64 6; D = +50 9; v = 367 29 km/s
| A = 64 6; D = +50 9; v = 367 29 km/s
|
361
|
|
362
| {25}.... 10.
| Ris. 10.
|
363
| Courvoisiers plumb line apparatus for measuring oscillations of the local gravitational vertical due to Lorentz contraction.
| Otves Kurvuaz'e dlya izmereniya kolebanii mestnoi gravitacionnoi vertikali iz-za sokrasheniya Lorenca.
|
364
| Similar observations were made by Esclangon, with the help of
André-Louis Danjon, using two horizontal pendulums with perpendicular
motions.25
| Analogichnye nablyudeniya vypolnil Eksklangon s pomosh'yu Andre-Lui
Danzhona, ispol'zuya dva gorizontal'nyh mayatnika s perpendikulyarnymi
dvizheniyami 25
|
365
| One of the pendulums lead to A=69; for the second pendulum,
A=52 Esclangon did not provide other information and did not attempt to
compute the speed of the Earth.
| Odin iz mayatnikov pokazal A=69 ;. dlya vtorogo mayatnika A =
52, Esklangon ne predostavil drugie svedeniya i ne pytalsya vychislit'
skorost' Zemli.
|
366
| {26}
|
|
367
| Another way of observing the variation of the local vertical
direction, according to Courvoisier, was with the aid of bubble levels.26
| Drugoi sposob nablyudeniya za izmeneniem napravleniya mestnoi vertikali, po Kurvuaz'e, byl vypolnen s pomosh'yu puzyr'kovyh urovnei. 26
|
368
| He used two very sensitive level meters.
| On ispol'zoval dva ochen' chuvstvitel'nyh urovnemerov.
|
369
| One of them was attached to the floor of the Babelsberg
underground clock room, and the other one was attached in a horizontal
position to one of the columns of the same room.
| Odin iz nih byl prikreplen k polu Babel'sbergskoi podzemnoi
komnaty s chasami, a drugoi byl prikreplen v gorizontal'nom polozhenii k
odnoi iz opor etoi zhe komnaty.
|
370
| Courvoisier measured the difference between the marks of the two level meters.
| Kurvuaz'e izmerili raznicu mezhdu otmetkami dvuh urovnemerov.
|
371
| The maximum predicted effect was about 0.30″, and with the
delicate instruments used by Courvoisier it was possible to measure
angular changes as small as 0,03″ |