Rambler's Top100Astronet    
  po tekstam   po forumu  vnutri temy
 

args[0]=message
args[1]=DB::DB::Message=HASH(0x419b150)
Re: Chernaya dyra
13.10.2013 21:11 | A.P. Vasi

Eto dolzhen prochitat' kazhdyi,
chto-by on znal i pomnil vechno -
chto vse idei relyativizma vzyaty iz ranee opisannyh
idei storonnikov efira.

-------------------------------------------------------------------------------------------------
http://ether-wind.narod.ru/Martins_2011_Courvoisier

Roberto de Andrade Martins. Poiski efira: popytki Leopol'da Kurvuaz'e izmerit' absolyutnuyu skorost' Solnechnoi sistemy

R. Martins. Searching for the Ether: Leopold Courvoisers Attempts to Measure the Absolute Velocity of the Solar System (PDF)

Roberto De Andrade Martins. Searching for the Ether: Leopold Courvoisers Attempts to Measure the Absolute Velocity of the Solar System

Roberto de Andrade Martins. Poiski efira: popytki Leopol'da Kurvuaz'e izmerit' absolyutnuyu skorost' Solnechnoi sistemy

Introduction

Vvedenie

Leopold Courvoisier

Leopol'd Kurvuaz'e

Courvoisier and relativity

Kurvuaz'e i otnositel'nost'

The method of the moving mirror

Metod dvizhushegosya zerkala

1 {1}DIO, The International Journal of Scientific History www.dioi.org DIO, Mezhdunarodnyi zhurnal nauchnoi istorii www.dioi.org
2 {3}
3 Physics Department, State University of Paraiba (UEPB), Brazil roberto.andrade.martins@gmail.com Fizicheskii fakul'tet Gosudarstvennogo universiteta Paraiba (UEPB), Braziliya roberto.andrade.martins@gmail.com
4

5
6 Leopold Courvoisier (1873-1955) was an observer at the Berlin / Babelsberg astronomical observatory from 1905 up to his retirement in 1938. Leopol'd Kurvuaz'e (1873-1955) byl nablyudatelem v Berlinskoi / Babel'sbergskoi astronomicheskoi observatorii s 1905 goda do svoei otstavki v 1938 godu.
7 Most of his work was traditional astrometrical observation resulting in the publication of several star catalogues. Bol'shinstvo ego rabot byli tradicionnymi astrometricheskimi nablyudeniyami, kotorye v rezul'tate priveli k publikacii ryada zvezdnyh katalogov.
8 A relevant part of his publications was devoted, however, to another subject: the attempt to detect the motion of the solar system through the ether. Znachimaya chast' ego publikacii byla posvyashena, odnako, drugoi teme: popytke obnaruzheniya dvizheniya Solnechnoi sistemy cherez efir.
9

10 Most of Courvoiser's search for measurable effects of the ether was based upon two principles. Bol'shinstvo iz popytok Kurvuaz'e obnaruzhit' izmerimye effekty efira byla osnovana na dvuh principah.
11 According to him, (1) the angles of incidence and reflection of light could be different, relative to the proper reference system of the mirror, if it moved through the ether; and (2) the Lorentz contraction of the Earth due to its motion through the ether produced observable effects relative to the Earths reference system. Po ego slovam, (1) ugly padeniya i otrazheniya sveta mozhet byt' drugim, po otnosheniyu k sobstvennoi sisteme otscheta zerkala, esli ono dvizhetsya cherez efir, i (2) sokrashenie Lorenca dlya Zemli iz-za ee dvizheniya cherez efir proizvodit nablyudaemye effekty po otnosheniyu k sisteme otscheta Zemli.
12 Both principles, of course, violate the principle of relativity. Oba principa, konechno, narushayut princip otnositel'nosti.
13 Courvoisier presented theoretical arguments attempting to show that there should exist second order measurable effects. Kurvuaz'e predstavil teoreticheskie argumenty, pytayas' pokazat', chto dolzhny sushestvovat' izmerimye effekty vtorogo poryadka.
14 He searched for those effects using both astronomical observations and laboratory experiments and claimed that he had measured a velocity of the solar system of about 600 km/s. On iskal eti effekty s pomosh'yu kak astronomicheskih nablyudenii, tak i laboratornyh eksperimentov i utverzhdal, chto on izmeril velichinu skorosti Solnechnoi sistemy primerno 600 km/s.
15 This paper presents a description and analysis of Courvoisers ether researches. Eta stat'ya predstavlyaet soboi opisanie i analiz efirnyh issledovanii Kurvuaz'e.
16

17
18 Leopold Courvoisier was born on 24 January 1873 in Rihen near Basel (Switzerland).1 His father Ludwig Georg Courvoisier was a physician and was in charge of the surgery chair of the University of Basel. Leopol'd Kurvuaz'e rodilsya 24 yanvarya 1873 goda v Rigene bliz Bazelya (Shveicariya). 1 Ego otec Lyudvig Georg Kurvuaz'e byl vrachom i vozglavlyal kafedru hirurgii v universitete Bazelya.
19 Leopold (or Leo, as he was usually called) passed away in the same city where he was born, on 31 December 1955. Leopol'd (ili Leo, kak ego obychno nazyvali) skonchalsya v tom zhe gorode, gde on rodilsya, 31 dekabrya 1955 goda.
20 However, most of his professional life was spent in Germany. Tem ne menee, bol'shuyu chast' svoei professional'noi zhizni on provel v Germanii.
21

22 Courvoisier exhibited an interest for astronomy since he was 15 years old. Kurvuaz'e proyavil interes k astronomii, kogda emu bylo 15 let.
23 In 1891 he began his university studies, first in Basel and later in {4} Strasbourg - at a time when this city belonged to Germany. V 1891 godu on nachal uchebu v universitete, snachala v Bazele, a zatem vStrasburge - v to vremya, kogda etot gorod prinadlezhal Germanii.
24 In 1897 he completed his dissertation, on the absolute height of the pole as observed from Strasbourg (Die absolute Polhöhe von Straßburg). V 1897 godu on zakonchil svoyu dissertaciyu po nablyudaemoi iz Strasburga absolyutnoi vysote polyusa ("Die absolute Polhöhe von Straßburg).
25 The next year he became an assistant observer at the Königstuhl astronomical observatory near Heidelberg, under Karl Wilhelm Valentiner. V sleduyushem godu on stal pomoshnikom nablyudatelya v astronomicheskoi observatorii Kenigshtul' nedaleko ot Haidel'berga, pod rukovodstvom Karla Vil'gel'ma Valentinera.
26 In 1900 he obtained his Doctor degree in Straßburg. V 1900 godu on poluchil doktorskuyu stepen' v Strasburge.
27 From 1905 onward he worked at the Berlin / Babelsberg observatory as an astronomical observer, under the direction of Karl Hermann Struve. S 1905 i dalee on rabotal v Berlinskoi / Babel'sbergskoi observatorii kak astronomicheskii nablyudatel' pod rukovodstvom Karla Germana Struve.
28 In 1913 the Berlin observatory moved to its new site, in Babelsberg,2 and one year later Courvoiser became its chief observer and professor. V 1913 godu Berlinskaya observatoriya pereehala na novoe mesto, v Babel'sberg, 2, a god spustya Kurvuaz'e stal tam glavnym nablyudatelem i professorom.
29 He worked at Babelsberg up to his retirement in 1938, when he was 65 years old. On rabotal v Babel'sberge do svoei otstavki v 1938 godu, v vozraste 65 let.
30 In 1943 he moved to his birthplace, where he kept making observations and publishing papers up to his death. V 1943 godu on pereehal na rodinu, gde on prodolzhal proizvodit' nablyudeniya i publikovat' stat'i do ego smerti.
31 Back to Switzerland, he was the editor of several of Leonhard Euler's astronomical works. V Shveicarii on byl redaktorom neskol'kih astronomicheskih rabot Leonarda Eilera.
32

33 Courvoisiers main astronomical contribution was a large series of routine astrometrical observations and the production of star catalogues. Glavnyi astronomicheskii vklad Kurvuaz'e sostoit v bol'shoi serii rutinnyh astrometricheskih nablyudenii i publikacii zvezdnyh katalogov.
34 Volumes 5, 6 and 7 of Poggendorff's Biographisch-literarisches Handwörterbuch provide references of about 10 large works (astronomical catalogues) besides nearly 100 minor contributions by him.3 However, Courvoisiers work was not restricted to common astrometrical observations. Toma 5, 6 i 7 izdaniya Biographisch literarisches Handwörterbuch Poggendorfa dayut ssylki na primerno 10 krupnyh rabot (astronomicheskih katalogov) Kurvuaz'e, pomimo okolo sta menee znachitel'nyh ego publikacii. 3 Tem ne menee, rabota Kurvuaz'e ne ogranichivaetsya obshimi astrometricheskimi nablyudeniyami.
35 From his tedious measurements there soon came out evidences that he regarded as disproof of the theory of relativity. Iz ego utomitel'nyh izmerenii vskore poyavilis' dokazatel'stva togo, chto on rassmatrivaet kak oproverzhenie teorii otnositel'nosti.
36

37 Courvoisier did not accept the theory of relativity. Kurvuaz'e ne prinyal teoriyu otnositel'nosti.
38 He believed there was an ether, and attempted to measure the absolute velocity of the solar system relative to this medium. On schital, chto sushestvuet efir, i popytalsya izmerit' absolyutnuyu skorost' Solnechnoi sistemy otnositel'no etoi sredy.
39 From 1921 to his death, Courvoisier published a series of over 30 papers where he described the theoretical basis of his search and the several experimental techniques he used in attempting to detect the motion of the Earth relative to the ether. S 1921 goda do svoei smerti, Kurvuaz'e opublikoval seriyu iz bolee chem 30 rabot, v kotoryh on opisal teoreticheskuyu osnovu ego issledovanii i neskol'ko eksperimental'nyh metodov, kotorye on ispol'zoval v popytke obnaruzhit' dvizhenie Zemli otnositel'no efira.
40 Some of his measurements used astronomical observations; other measurements depended on other physical effects (gravitational, etc.). Nekotorye iz ego izmerenii ispol'zovali astronomicheskie nablyudeniya; drugie izmereniya zavisyat ot drugih fizicheskih effektov (gravitacionnye i t.d.).
41 As a result of his observations he claimed that he had measured a velocity of the solar system of about 600 km/s in a direction close to 75 right ascension and +40 declination. V rezul'tate svoih nablyudenii on utverzhdal, chto on izmeril skorost' Solnechnoi sistemy, primerno sostavlyayushuyu 600 km / s v napravlenii, blizkom k 75 pryamogo voshozhdeniya i +40 skloneniya.
42

43
44 {5} .... 1. Leopold Courvoisier (about 30 years old).4 Ris. 1. Leopol'd Kurvuaz'e (v vozraste okolo 30 let). 4
45

46 The papers describing those researches were published in several scientific journals - especially Astronomische Nachrichten, Physikalische Zeitschrift and Zeitschrift für Physik. Stat'i, opisyvayushie eti issledovaniya, byli opublikovany v neskol'kih nauchnyh zhurnalah osobenno v Astronomische Nachrichten, Physikalische Zeitschrift für i Zeitschrift Physik.
47 His work was largely ignored and had a small impact. Ego raboty v znachitel'noi stepeni ignorirovalis' i imeli neznachitel'noe vliyanie.
48 A few authors (e.g. Ernest Esclangon and Dayton Miller) who also claimed they had observed effects due to the ether have cited his works. Neskol'ko avtorov (naprimer, Ernest Esklangon i Deiton Miller), kotorye takzhe utverzhdali, chto oni nablyudali effekty, svyazannye s efirom, ssylalis' na ego proizvedeniya.
49 {6} Historians of science have also neglected those researches,5 although they present the largest set of empirical results that was ever published against the theory of relativity by a professional scientist. Istoriki nauki takzhe prenebregali etimi issledovaniyami, 5, hotya oni predstavlyayut soboi krupneishii nabor empiricheskih rezul'tatov, kotorye byli kogda-libo opublikovany protiv teorii otnositel'nosti professional'nym uchenym.
50 Courvoisier exhibited an outstanding theoretical and experimental skill, and his results can be regarded as one of the strangest puzzles in the history of relativity. Kurvuaz'e pokazyval vydayusheesya teoreticheskoe i eksperimental'noe masterstvo, i ego rezul'taty mozhno rassmatrivat' kak odnu iz samyh strannyh zagadok v istorii teorii otnositel'nosti.
51

52
53 Courvoisier's earliest involvement with relativity was an outcome of his routine measurements of star positions. Samoe pervoe stolknovenie Kurvuaz'e s teoriei otnositel'nosti stalo rezul'tatom ego rutinnyh izmerenii polozhenii zvezd.
54 In the beginning of the twentieth century, Courvoisier had noticed that the right ascension and declination of fixed stars suffered a small influence when they are observed close to the Sun. V nachale HH veka Kurvuaz'e zametil, chto pryamoe voshozhdenie i sklonenie nepodvizhnyh zvezd podverzheno nebol'shomu vliyaniyu, kogda oni nablyudayutsya blizko k Solncu.
55 As this influence had a period of one year, he called it annual refraction. Poskol'ku eto vliyanie imelo period odin god, on nazval ego godovoi refrakciei.
56 His first work on the subject was published in 1905,6 that is, much earlier than the development of the general theory of relativity. Ego pervaya rabota na etu temu byla opublikovana v 1905 godu, 6 to est' namnogo ran'she, chem byla razrabotana obshaya teoriya otnositel'nosti.
57 In 1911, after the publication of Einsteins early thoughts on the gravitational deflection of light rays, Erwin Freundlich recalled that Courvoisier's work had exhibited an effect that was qualitatively similar to the one predicted by Einstein.7 V 1911 godu, posle publikacii rannih myslei Einshteina po gravitacionnomu otkloneniyu luchei sveta, Ervin Freindlih napomnil, chto rabota Kurvuaz'e pokazala effekt, kotoryi kachestvenno pohozh na predskazannyi Einshteinom. 7
58 Courvoisier interpreted the effect he had measured as due to refraction of light by a denser medium around the Sun, not as a consequence of relativity. Kurvuaz'e interpretiroval effekt, kotorye on izmeril, kak sledstvie prelomlenie sveta bolee plotnoi sredoi vokrug Solnca, a ne kak sledstvie teorii otnositel'nosti.
59 It seems that Courvoisiers opposition to Einstein's work grew steadily from this time onward and he became one of the most intransigent supporters of ether theory after the theory of general relativity received strong confirmation (the eclipse measurements), in 1919. Pohozhe, chto oppoziciya Kurvuaz'e k rabotam Einshteina neuklonno rosla s etogo vremeni, i on stal odnim iz samyh nesgibaemyh storonnikov teorii efira posle togo, kak obshaya teoriya otnositel'nosti poluchila sil'noe podtverzhdenie (izmereniya vo vremya zatmeniya) v 1919 godu.
60 Courvoisier's main anti-relativistic work, however, is not directly linked to annual refraction.8 Osnovnye anti-relyativistskih raboty Kurvuaz'e, odnako, neposredstvenno ne svyazany s godovym prelomleniem. 8
61

62 Courvoisier accepted the existence of a static ether, similar to the medium proposed in the early eighteenth century by Augustin Fresnel. Kurvuaz'e priznal sushestvovanie staticheskogo efira, pohozhii na sredu, predlozhennuyu v nachale vosemnadcatogo veka Ogyustenom Frenelem.
63 That theory led to the conclusion that there could be no first-order influence of the motion {7} through the ether upon optical experiments performed in the Earth. Eta teoriya privela k vyvodu, chto ne moglo byt' vliyaniya effektov pervogo poryadka pri dvizhenii cherez efir v opticheskih eksperimentah, provedennyh na Zemle.
64 Besides that, the negative outcome of the Michelson-Morley experiment required an additional hypothesis, and Courvoisier accepted that motion through the ether produced a real contraction of all moving bodies, according to the early explanation proposed by Fitzgerald and Lorentz. Krome togo, otricatel'nyi rezul'tat opyta Maikel'sona treboval dopolnitel'noi gipotezy i Kurvuaz'e predpolozhil, chto dvizhenie cherez efira proizvodit real'noe szhatie vseh podvizhnyh tel, v sootvetstvii s rannimi ob'yasneniyami, predlozhennymi Ficdzheral'dom i Lorencem.
65 According to Lorentz, the principle of relativity would hold exactly for any optical or electromagnetic phenomenon, but Courvoisier did not follow Lorentzs theory in this respect. Po slovam Lorenca, princip otnositel'nosti budet primenim v tochnosti dlya lyubogo opticheskogo ili elektromagnitnye yavleniya, no Kurvuaz'e ne posledoval teorii Lorenca v etom otnoshenii.
66 He directly denied the principle of relativity and attempted to measure the motion of the solar system through the ether using several different techniques. On pryamo otrical princip otnositel'nosti i popytalsya izmerit' dvizhenie Solnechnoi sistemy cherez efir s pomosh'yu razlichnyh metodov.
67

68 In 1921 Courvoisier published his first thoughts on the possibility of measuring the absolute velocity of the Earth through the ether.9 V 1921 godu Kurvuaz'e opublikoval svoi pervye mysli o vozmozhnosti izmereniya absolyutnoi skorosti Zemli otnositel'no efira. 9
69 According to Courvoisiers own declaration, his early calculations concerning the motion of the Earth were an outcome of routine work.10 V sootvetstvii s sobstvennoi deklaraciei Kurvuaz'e, ego rannie raschety o dvizhenii Zemli bylo rezul'tatom rutinnoi raboty. 10
70 In 1920 the Leyden Observatory published the details of a large series of observations of stars close to the North Pole that had been made between 1862 and 1874. V 1920 godu Leidenskaya observatoriya opublikovala podrobnosti iz bol'shoi serii nablyudenii zvezd, raspolozhennyh blizko k Severnomu polyusu, kotorye byli sdelany mezhdu 1862 i 1874 gg.
71 Those measurements used an old method aiming to reduce observational errors: the stars were observed both with the meridian telescope directly pointed to them, and with the telescope pointed to the images of the stars reflected by a mercury mirror. Eti izmereniya ispol'zovali staryi metod, napravlennyi na snizhenie oshibok nablyudenii: zvezdy nablyudalis' kak s pomosh'yu meridiannogo teleskopa, pryamo ukazyvayushego na nih, a takzhe s teleskopom, napravlennym k otrazheniyam zvezd zerkalom iz rtuti.
72 This double assessment allowed corrections for any changes of the local vertical due to geological motions. Eta dvoinaya ocenka pozvolila proizvodit' korrektirovki lyubyh izmenenii mestnoi vertikali za schet geologicheskih dvizhenii.
73 It occurred to Courvoisier that those determinations could be used to measure the speed of the Earth through the ether. Kurvuaz'e prishlo v golovu, chto eti opredeleniya mogut ispol'zovat'sya dlya izmereniya skorosti dvizheniya Zemli cherez efir.
74

75 Courvoisier assumed that the reflection of light by a mirror could undergo some influence of the motion of the mirror through the ether, even when the effect was observed relative to the proper reference system of the mirror. Kurvuaz'e predpolagal, chto otrazhenie sveta ot zerkala mozhet podvergat'sya nekotoromu vliyaniyu ot dvizhenie zerkala cherez efir, dazhe esli effekt nablyudalsya po otnosheniyu k sobstvennoi sisteme otscheta zerkala.
76 Any observable effect should be of the second order in v/c. It would be impossible to detect such a small effect if the speed of the Earth relative to the ether was about 104 c (that is, its orbital velocity), because for usual angle measurements (let us say, 60) a difference of 108 would amount to only 0.002″ an effect that could not be observed. Lyuboi nablyudaemyi effekt dolzhen byt' vtorogo poryadka otnositel'no v / c. Bylo by nevozmozhno obnaruzhit' takoi malen'kii effekt, esli skorost' Zemli otnositel'no efira byl priblizitel'no 10 4 s (to est', ravna ee orbital'noi skorosti), tak kak dlya obychnyh izmerenii ugla (skazhem, 60) raznica 10 8 sostavit lish' 0,002″ effekt, kotoryi ne mog nablyudat'sya.
77 However, Courvoisier assumed that there could exist a much larger speed of the whole solar system relative to the ether, and analyzed the data published by the Leyden Observatory searching for some systematic effect. Tem ne menee, Kurvuaz'e predpolagal, chto mozhet sushestvovat' gorazdo bol'shaya skorost' vsei Solnechnoi sistemy otnositel'no efira, i proanaliziroval dannye, opublikovannye Leidenskoi observatoriei v poiskah sistematicheskogo effekta.
78

79 He computed the difference zz' between the direct zenith distance z and the reflected zenith distance z' of the stars listed in the catalogue, attempting to find a systematic effect that varied in a periodic way with the sidereal time of observations. On vychislil raznicu Z-Z′ mezhdu pryamym zenitnym rasstoyaniem z i otrazhennym zenitnym rasstoyaniem z′ zvezd v kataloge, pytayas' naiti sistematicheskii effekt, kotorye var'irovalsya by periodicheskim obrazom vmeste so zvezdnym vremenem nablyudenii.
80 Using a graphical method, he did find such an effect, and then he submitted the data to quantitative analysis. Ispol'zuya graficheskii metod, on nashel takoi effekt, a zatem predstavil dannye dlya kolichestvennogo analiza.
81 He derived an equation to describe the reflection of light in a moving mirror and {8} determined the relevant parameters from an analysis of the Leyden data, using the method of minimum squares. On poluchil uravnenie dlya opisaniya otrazheniya sveta otnositel'no dvizhushegosya zerkala i opredelil sootvetstvuyushie parametry iz analiza dannyh Leidena, ispol'zuya metod naimen'shih kvadratov.
82 He obtained an effect corresponding to a speed of about 800 km/s in the direction of the Auriga constellation. On poluchil effekt, sootvetstvuyushii skorosti okolo 800 km / s v napravlenii sozvezdiya Voznichego.
83 This speed is, of course, much larger than the orbital speed of the Earth. Eta skorost', konechno, znachitel'no bol'she, chem orbital'naya skorost' Zemli.
84 Courvoisier interpreted it as due to the motion of the whole solar system through the ether. Kurvuaz'e interpretiroval ee kak sledstvie dvizheniya vsei Solnechnoi sistemy cherez efir.
85 A few years later, Courvoisier obtained new data, using the same method (direct versus reflected direction). Neskol'ko let spustya, Kurvuaz'e poluchil novye dannye, ispol'zuya tot zhe metod (sravnenie pryamogo i otrazhennogo napravleniya).
86 Using the vertical circle of the Babelsberg observatory, he made a long series of observations (19211922) that led to results similar to those that had been obtained from the Leyden observations. Ispol'zuya vertikal'nyi krug Babel'sbergskoi observatorii, on vypolnil dlinnyi ryad nablyudenii (19211922), kotorye priveli k rezul'tatam, analogichnym tem, kotorye byli polucheny iz nablyudenii v Leidene.
87

88 After obtaining his first positive result, Courvoisier attempted to find other independent methods of measuring the speed of the Earth (or the solar system) relative to the ether. Posle polucheniya pervogo polozhitel'nogo rezul'tata Kurvuaz'e pytalsya naiti drugie nezavisimye metody izmereniya skorosti Zemli (ili Solnechnoi sistemy) otnositel'no efira.
89 He conjectured that the Lorentz contraction of the Earth and of optical instruments could have some small observable influence on astronomical observations. On predpolozhil, chto sokrashenie Zemli i opticheskih priborov po Lorencu mogli imet' nekotorye nebol'shie vliyanie na nablyudaemye astronomicheskie yavleniya.
90 According to Courvoisier, the motion of the Earth relative to the ether produces a contraction that transforms its spherical shape into an ellipsoid with the smaller axis in the direction of its motion. Soglasno Kurvuaz'e, dvizhenie Zemli otnositel'no efira proizvodit szhatie, kotoroe preobrazuet svoyu sfericheskuyu formu v ellipsoid, men'shaya os' kotorogo nahoditsya v napravlenii ego dvizheniya.
91 The surface of the ellipsoid, at each point, was supposed to be perpendicular to the local gravitational field. Poverhnost' ellipsoida v kazhdoi tochke dolzhna byla byt' perpendikulyarna k mestnomu gravitacionnomu polyu.
92 As the Earth rotates, each place on the surface of the Earth passes through different points of the ellipsoid, and the angle between the axis of the Earth and the local vertical direction should undergo a periodical change. Pri vrashenii Zemli, kazhdoe mesto na poverhnosti Zemli prohodit cherez razlichnye tochki ellipsoida, a ugol mezhdu os'yu Zemli i mestnym vertikal'nym napravleniem, dolzhno podvergat'sya periodicheskomu izmeneniyu.
93

94 Of course, it is impossible to measure the angle between the local vertical and the axis of rotation of the Earth. Konechno, nevozmozhno izmerit' ugol mezhdu mestnoi vertikal'yu i os'yu vrasheniya Zemli.
95 However, since the direction of this axis is fairly constant relative to the fixed stars (for short time periods), it is possible to choose a star very close to the North celestial pole and to measure its distance to the zenith (that is, the local vertical direction). Odnako, tak kak napravlenie etoi osi prakticheski neizmenno otnositel'no nepodvizhnyh zvezd (v techenie korotkih periodoy vremeni), to mozhno vybrat' zvezdu v neposredstvennoi blizosti ot severnogo polyusa zvezdnogo neba i izmerit' ego [uglovoe] rasstoyanie k zenitu (to est', k mestnomu vertikal'nomu napravleniyu).
96 This angle, according to Courvoisier's theory, should undergo a periodical change, as a function of the sidereal time. Etot ugol, soglasno teorii Kurvuaz'e, dolzhen podvergat'sya periodicheskim izmeneniyam v zavisimosti ot zvezdnogo vremeni.
97

98 As a matter of fact, Courvoisier had already measured the position of a star very close to the North pole, in a long series of observations from 1914 to 1917, using the Babelsberg Observatory vertical circle.11 Na samom dele, Kurvuaz'e uzhe izmeryal polozhenie zvezdy, raspolozhennoi ochen' blizko k Severnomu polyusu, v dlinnoi serii nablyudenii s 1914 po 1917 god, ispol'zuya vertikal'nyi krug Babel'sbergskoi observatorii .11
99 Those measurements were very accurate and were evenly distributed as regards the sidereal time of the observations. Eti izmereniya byli ochen' tochnymi i ravnomerno raspredelennymi otnositel'no zvezdnogo vremya nablyudenii.
100 They were therefore suitable for looking for the influence of the Lorentz contraction on astronomical measurements. Poetomu oni podhodili dlya vyyavleniya togo, kak vliyaet sokrashenie Lorenca na astronomicheskie izmereniya.
101

102 As in the former case, Courvoisier first plotted the zenithal distances of the star against sidereal time, and found a regular fluctuation of the angle. Kak i v predydushem sluchae, Kurvuaz'e snachala postroil zenitnye rasstoyaniya zvezdy otnositel'no zvezdnogo vremeni, i obnaruzhil regulyarnye kolebaniya ugla.
103 {9} He then developed an equation to account for the effect, analyzed the data using the minimum square method, and obtained his second measurement of the velocity of the Earth relative to the ether. Zatem on razrabotal uravnenie dlya ucheta effekta, proanalizirovav dannye s ispol'zovaniem metoda naimen'shih kvadratov i poluchil izmerenie skorosti Zemli otnositel'no efira vtorym sposobom.
104 The speed obtained in this case was about 700 km/s, in the direction of the constellation of Perseus (not very far from Auriga). Skorost', poluchennaya v etom sluchae, byla okolo 700 km/s v napravlenii sozvezdiya Perseya (ne ochen' daleko ot sozvezdiya Voznichego).
105 Courvoisier regarded the agreement of those two earliest results as satisfactory, and this led him to further researches. Kurvuaz'e rassmatrival sootvetstvie etih dvuh rannih rezul'tatov kak udovletvoritel'nye, i eto privelo ego k dal'neishim issledovaniyam.
106 There was a delay of 5 years between Courvoisiers first positive results and his next publication on the subject.12 In this period he accumulated a series of positive results by different methods, obtained the equations required for the analysis of his data, and devised new methods for measuring the absolute speed of the Earth. Byla zaderzhka na 5 let mezhdu pervymi polozhitel'nymi rezul'tatami Kurvuaz'e i ego sleduyushei publikaciei na etu temu. 12 V etot period on nakopil ryad polozhitel'nyh rezul'tatov raznymi metodami, poluchil uravneniya, neobhodimye dlya analiza etih dannyh, a takzhe razrabotal novye metody dlya izmereniya absolyutnoi skorosti Zemli.
107 This delay shows that Courvoisier was careful enough to resist publishing preliminary results before he was able to amass a large amount of evidence for his claim. Eta zaderzhka pokazyvaet, chto Kurvuaz'e byl dostatochno ostorozhen, chtoby izbegat' publikacii predvaritel'nyh rezul'tatov, prezhde chem on smog nakopit' bol'shoe kolichestvo dokazatel'stv ego zayavlenii.
108

109
110 Courvoisier derived equations13 that related the relevant measurements to the parameters of the motion of the Earth relative to the ether.14 Kurvuaz'e poluchil uravneniya 13, kotorye otnosyatsya k sootvetstvuyushim izmereniyam parametrov dvizheniya Zemli otnositel'no efira 14
111 The main parameters that appear in his equations (.... 2) are: Osnovnye parametry, kotorye poyavlyayutsya v ego uravneniya (ris. 2) yavlyayutsya sleduyushimi:
112 c = the speed of light relative to the ether = 300,000 km/s s = skorost' sveta otnositel'no efira = 300000 km / s
113 v = speed of the Earth (or the solar system) relative to the ether v = skorost' Zemli (ili Solnechnoi sistemy) otnositel'no efira
114 A = right ascension of the apex of the absolute motion A = pryamoe voshozhdenie apeksa absolyutnoi skorosti
115 D = declination of the apex of the absolute motion D = sklonenie apeksa absolyutnoi dvizheniya
116 α = North local component of v/c α = severnaya lokal'naya sostavlyayushaya v/c
117 β = Zenith local component of v/c β = zenitnaya lokal'naya sostavlyayushaya v/c
118 γ = West local component of v/c γ = zapadnaya lokal'naya sostavlyayushaya v/c
119 ϕ = latitude of the terrestrial observatory φ = shirota nazemnoi observatorii
120 θ = sidereal time of measurement θ = zvezdnoe vremya izmereniya
121

122 A straightforward geometrical analysis shows that the components of v/c are: Prostoi geometricheskoi analiz pokazyvaet, chto komponenty v/c, yavlyayutsya:
123 α = (v/c) [cos ϕ sin D sin ϕ cos D cos (θ A)] (1)
β = (v/c) [sin ϕ sin D + cos ϕ cos D cos (θ A)] (2)
α = (v/c) [cos ϕ sin D sin ϕ cos D cos (θ A)] (1)
β = (v/c) [sin ϕ sin D + cos ϕ cos D cos (θ A)] (2)
124 {10}
γ = (v/c) cos D sin (θ A) (3)
γ = (v/c) cos D sin (θ A) (3)
125
126 .... 2. Ris. 2.
127 This diagram shows the main geometrical parameters used in Courvoisiers theoretical analysis of ether effects. Eta diagramma pokazyvaet osnovnye geometricheskie parametry, ispol'zuemye Kurvuaz'e v teoreticheskom analize effektov efira.
128 The spherical surface represents the Earth, and the observer is at I, and the local directions Z, N, W correspond to Zenith, geographical North and West. Sfericheskaya poverhnost' predstavlyaet Zemlyu, nablyudatel' nahoditsya v I, i mestnye napravleniya Z, N, W sootvetstvuyut zenitu, geografichesomu severu i zapadu.
129 The North Pole is in the direction NP. Severnyi polyus v napravlenii NP.
130 The velocity of the Earth is . Skorost' Zemli sostavlyaet .
131

132 In Courvoisier's first method, as described above, light was reflected by a mirror. V pervom metode Kurvuaz'e, kak opisano vyshe, svet otrazhaetsya ot zerkala.
133 To derive the theoretical effect, it was necessary to study the influence of the motion of the mirror through the ether upon the direction of the reflected ray. Dlya vyvoda teoreticheskogo effekta, bylo neobhodimo izuchit' vliyanie dvizheniya zerkala cherez efir na napravlenie otrazhennogo lucha.
134 Courvoisier made use of the non-relativistic analysis developed by Adolf von Harnack,15 that predicted that the angle of reflection would be different from the angle of incidence, relative to the proper reference system of the mirror (.... 3). Kurvuaz'e ispol'zoval nerelyativistskii analiz, razrabotannyi Adol'fom fon Harnakom, 15 kotoryi predskazal, chto ugol otrazheniya budet otlichat'sya ot ugla padeniya, po otnosheniyu k sobstvennoi sisteme otscheta zerkala (ris. 3).
135 This was one of Courvoisiers main assumptions that was incompatible with the principle of relativity. Eto bylo odno iz osnovnyh predpolozhenii Kurvuaz'e, kotoroe bylo nesovmestimo s principom otnositel'nosti.
136
137 {11} .... 3. Ris. 3.
138 Following a theoretical analysis by Adolf von Harnack, Courvoisier accepted that the angle of reflection of light in a moving mirror is influenced by its motion through the ether, and that there is a second-order effect that can be measured in the reference frame of the mirror. Sleduya teoreticheskomu analizu Adol'fa fon Harnaka, Kurvuaz'e prinyal, chto ugol otrazheniya sveta dlya dvizhushegosya zerkala zavisit ot ego dvizheniya cherez efir, i chto est' effekt vtorogo poryadka, kotoryi mozhet byt' izmeren v sisteme otscheta zerkala.
139

140 Taking into account this principle of the moving mirror, Courvoisier predicted that the angle between the local vertical (zenith) and the direction of observation of a given star would be slightly different from the angle between the zenith and the direction of the star observed using a mercury mirror (.... 4). S uchetom etogo principa dvizhushegosya zerkala, Kurvuaz'e predskazal, chto ugol mezhdu mestnoi vertikal'yu (zenitom) i napravleniem nablyudeniya opredelennoi zvezdy budet neskol'ko otlichat'sya ot ugla mezhdu zenitom i napravleniem na zvezdu, kotoroe nablyudalaetsya s ispol'zovaniem rtutnogo zerkala (ris. 4).
141

142
143 .... 4. Ris. 4.
144 Courvoiser compared the direct measurement of the direction of a star with its direction observed by reflection on a mercury mirror. Kurvuaz'e sravnival pryamoe izmerenie napravleniya na zvezdu s ee napravleniem, kotoroe nablyudaetsya pri otrazhenii ot rtutnogo zerkala.
145 {12}In this specific case, the contraction of the Earth could produce no effect, because both measurements were made relative to the same reference (the local vertical) and the surface of the mercury mirror is, of course, perpendicular to the local vertical, whatever the changes that the gravitational field could undergo due to Lorentz contraction. V dannom konkretnom sluchae, szhatie Zemli ne mozhet proizvodit' nikakogo effekta, potomu chto oba izmereniya proizvodyatsya otnositel'no odnoi i toi zhe tochki otscheta (mestnoi vertikali) i poverhnost'yu zerkala rtuti, konechno, perpendikulyarna k mestnoi vertikali, nezavisimo ot izmeneniya, kotoromu gravitacionnoe pole mozhet podvergat'sya iz-za sokrasheniya Lorenca.
146 The predicted effect was a small systematic difference between the direct and the reflected angles, which should depend on the direction of the observatory relative to the motion of the Earth through the ether. Predskazannyi effekt byl nebol'shim sistematicheskim razlichiem mezhdu pryamym i otrazhennym uglom, kotoroe dolzhno zaviset' ot napravleniya otnositel'nogo dvizheniya Zemli i observatorii cherez efir.
147

148
149 .... 5. Ris. 5.
150 Harnacks diagram for analyzing the reflection of light in a moving mirror. Diagrammy Harnaka dlya analiza otrazheniya sveta v dvizhushemsya zerkale.
151 The initial position of the mirror is S, and after a time δt its position is S'. Nachal'noe polozhenie zerkala S, i cherez nekotoroe vremya δt ego polozhenie S′.
152 AA' is a wave front of the incident light beam, and BB' is a wave front of the reflected beam. AA′ volnovoi front padayushego lucha sveta, i VV′ volnovoi front otrazhennogo lucha.
153

154 Let θ be the angle of incidence and θ' the angle of reflection of a light ray in a moving mirror, measured relative to the ether (.... 5). Pust' θ ugol padeniya i θ′ ugol otrazheniya lucha sveta v dvizhushemsya zerkale, izmerennye otnositel'no efira (ris. 5).
155 According to Harnack's analysis, instead of θ=θ' the following equations would hold: Soglasno analizu Harnaka, podstanovka θ = θ′ privedet k sleduyushim uravneniyam:
156 sin θ' = (1 β2) sin θ / (1 + 2β cos θ + β2) (4) sin θ′ = (1 β2) sin θ / (1 + 2β cos θ + β2) (4)
157 cos θ' = [(1 + β2) cos θ + 2β] / (1 + 2β cos θ + β2) (5) cos θ′ = [(1 + β2) cos θ + 2β] / (1 + 2β cos θ + β2) (5)
158 {13} In those equations, the speed of the mirror is ß=v/c, in the direction perpendicular to the mirror. V etih uravneniyah, skorost' zerkala β = v / s, v napravlenii, perpendikulyarnom k zerkalu.
159 Any motion of the mirror parallel to its surface would have no influence upon the direction of light. Lyuboe dvizhenie zerkala parallel'no ego poverhnosti ne budet imet' nikakogo vliyaniya na napravlenie sveta.
160 In the case of the mercury mirror, the relevant direction if the local vertical, and therefore β, here, has the same general meaning ascribed by Courvoisier to this symbol. V sluchae rtutnogo zerkala, relevantnoe napravlenie mestnaya vertikal' i, sledovatel'no, β zdes' imeet takoi zhe obshii smysl, kotoryi Kurvuaz'e pripisyvaet etomu simvolu.
161 Relative to the proper reference system of the mirror there is an aberration effect, and the angles of incidence (z) and reflection (z') are: Po otnosheniyu k sobstvennoi sisteme otscheta zerkala est' effekt aberracii, a ugly padeniya (z) i otrazheniya (z′) sostavlyayut:
162 z = θ + α cos θ β sin θ (6) z = θ + α cos θ β sin θ (6)
163 z = θ' + α cos θ' + β sin θ' (7) z = θ′ + α cos θ′ + β sin θ′ (7)
164 where α is component of the velocity v/c of the mirror parallel to its surface. gde α yavlyaetsya sostavlyayushei skorosti v / c zerkala, parallel'noi ego poverhnosti.
165 Notice that this is the classical aberration effect. Zametim, chto eto klassicheskii effekt aberracii.
166 A relativistic analysis would lead to a different result. Relyativistskoi analiz privel by k drugomu rezul'tatu.
167

168 The measured effect is the difference between z' and z: Izmerennyi effekt predstavlyaet soboi raznicu mezhdu z′ i z:
169 z' z = (θ' θ) + α (cos θ' cos θ) + β (sin θ' sin θ) (8) z′ z = (θ′ θ) + α (cos θ′ cos θ) + β (sin θ′ sin θ) (8)
170 Taking into account the above equations and making suitable substitutions, one obtains the approximate result: S uchetom privedennyh vyshe uravnenii i prinyatiya sootvetstvuyushih zamen, mozhno poluchit' priblizitel'noe rezul'tat:
171 z' z = 2αβ sin2 z (9) z′ z = 2αβ sin2 z (9)
172 Replacing α and β by their values in Eqs. (1) and (2), one obtains: Zamenyaya α i β na ih znacheniya v formulah (1) i (2), poluchim:
173 z' z = [(v/c)2 sin2 z].[sin 2ϕ.sin2 D + cos 2ϕ.sin 2D. cos (θA) sin 2ϕ.cos2D.cos2(θA)] (10) z′ z = [(v/c)2 sin2 z].[sin 2ϕ.sin2 D + cos 2ϕ.sin 2D.cos (θA) sin 2ϕ.cos2D.cos2(θA)] (10)
174 Notice that this equation contains a constant term and two periodical components with different periods one sidereal day [cos (θA)] and half a sidereal day [cos2 (θA)]. Obratite vnimanie, chto eto uravnenie soderzhit postoyannyi chlen i dva periodicheskih komponenta s razlichnymi periodami odin dlya zvezdnyh sutok, [cos (θA)] i polovinu zvezdnyh sutok [cos2 (θA)].
175 Therefore, from a suitable analysis of the data it should be possible to obtain the speed (v/c), the declination (D) and the right ascension (A) of the motion of the Earth relative to the ether. Takim obrazom, iz sootvetstvuyushego analiza dannyh dolzhna poyavit'sya vozmozhnost' poluchit' skorost' (v/c), sklonenie (D) i pryamoe voshozhdenie (A) dvizheniya Zemli otnositel'no efira.
176




[Citirovat'][Otvetit'][Novoe soobshenie]
Forumy >> Obsuzhdenie publikacii Astroneta
Spisok  /  Derevo
Zagolovki  /  Annotacii  /  Tekst

Astronet | Nauchnaya set' | GAISh MGU | Poisk po MGU | O proekte | Avtoram

Kommentarii, voprosy? Pishite: info@astronet.ru ili syuda

Rambler's Top100 Yandeks citirovaniya