Rambler's Top100Astronet    
  po tekstam   po forumu  vnutri temy
 

args[0]=message
args[1]=DB::DB::Message=HASH(0x43b92f0)
Re: Chernaya dyra
13.10.2013 21:19 | A.P. Vasi

Repetition of the Leyden measurements

Povtorenie leidenskih izmerenii

Courvoisiers device for measuring the absolute speed of the earth

Ustroistvo Kurvuaz'e dlya izmereniya absolyutnoi skorosti Zemli

The double mirror experiments

Eksperimenty s dvoinymi zerkalami

The second method: Lorentz contraction

Vtoroi sposob: sokrashenie Lorenca

Comparison between measurements from different places

Sravnenie izmerenii, sdelannyh v raznyh mestah

Nadir observations

Nablyudeniya nadira

Other methods

Drugie metody

Plumb line motion

Dvizhenie linii otvesa

Bubble level

Puzyr'kovyi uroven'

Comparison between pendulum clocks at different places

Sravnenie mayatnikovyh chasov v raznyh mestah

Local comparison between pendulum clock and chronometer

Mestnoe sravnenie mayatnikovyh chasov i hronometrov

Gravimetric observations

Gravimetricheskie nablyudeniya

Eclipses of Jupiters satellites

Zatmeniya sputnikov Yupitera

Secular aberration of light

Vekovye aberracii sveta

Final comments

Zaklyuchitel'nye kommentarii

177
178 The Leyden measurements had used four stars close to the North Pole. Pri izmereniyah v Leidene ispol'zovalis' chetyre zvezdy, blizkie k Severnomu polyusu.
179 The difference zz' was measured in a series of observations, at the times of upper and lower culmination of each star. Raznica zz′ byla izmerena v serii nablyudenii v momenty verhnei i nizhnei kul'minacii kazhdoi zvezdy.
180 The observed values of the periodical components of zz' amounted to less than 1'', varying from 0.04'' for one of the stars to about 0.5″ for another. Nablyudaemye znacheniya periodicheskih komponent zz′ sostavili menee 1″, s variaciei ot 0,04″ dlya odnoi iz zvezd do 0,5″ dlya drugoi.
181 The error of the measurements was estimated as 0.01″, therefore the effect was regarded as significant. Pogreshnost' izmerenii byla ocenena kak 0,01″, poetomu effekt rascenen kak znachimyi.
182 From the Leyden data Courvoisier obtained the results: Iz Leidenskih dannyh Kurvuaz'e byli polucheny rezul'taty:
183 A = 104 21; D = +39 27; v = 810 215 km/s A = 104 21; D = +39 27; v = 810 215 km/s
184 {14} The estimated error of the speed amounted to about 25%. Ocenivaemaya oshibka skorosti sostavila okolo 25%.
185 The errors of the right ascension and declination amounted to about 1/15 of the full circle. Oshibki pryamogo voshozhdeniya i skloneniya sostavili okolo 1/15 polnogo kruga.
186 Between 1921 and 1922 Courvoisier repeated the Leyden measurements, but with a slight change of method. Mezhdu 1921 i 1922 gg. Kurvuaz'e povtoril leidenskie izmereniya, no s nebol'shim izmeneniem metoda.
187 Instead of a meridian circle he used a Wanschaff vertical circle that enabled him to make measurements of the stars at any time during the night. Vmesto meridiannogo kruga on ispol'zoval vertikal'nyi krug Vanshaffa, kotoryi pozvolil emu proizvesti izmereniya zvezd v lyuboe vremya v techenie nochi.
188 Therefore his measurements were not limited to two sidereal times for each star. Poetomu ego izmereniya ne byli ogranicheny dvumya momentami zvezdnogo vremeni dlya kazhdoi zvezdy.
189

190 From 4 June to 14 December 1921 he made a series of 142 measurements of the polar star BD +89.3, and from 18 March to 23 May 1922 he made further 64 determinations of zz'. S 4 iyunya po 14 dekabrya 1921 godu on proizvel seriyu iz 142 izmerenii Polyarnoi zvezdy BD 89,3 , a s 18 marta po 23 maya 1922 g. on vypolnil dal'neishie 64 opredeleniya zz′.
191 From those measurements Courvoisier obtained: Iz etih izmerenii Kurvuaz'e poluchil:
192 A = 93 7; D = +27 12; v = 652 71 km/s A = 93 7; D = +27 12; v = 652 71 km/s
193 The estimated relative error of the speed was reduced to about 10% and the errors of the right ascension and declination amounted to less than 1/30 of the full circle. Raschetnaya otnositel'naya oshibka opredeleniya skorosti snizilas' do okolo 10%, a oshibki opredeleniya pryamogo voshozhdeniya i skloneniya sostavili menee chem 1/30 polnogo kruga.
194 Courvoisiers work called the attention of a French astronomer, the director of the Strasbourg observatory, Ernest Esclangon, who repeated those measurements.18 Rabota Kurvuaz'e obratila na sebya vnimanie francuzskogo astronoma, direktora Strasburgskoi observatorii, Ernesta Esklangona, kotoryi povtoril eti izmereniya. 18
195 He confirmed the existence of a systematic effect of the same order of magnitude, and computed the values of A=69 and D=44. On podtverdil sushestvovanie sistematicheskogo effekta togo zhe poryadka velichiny, i vychislil znacheniya A=69 i D=44.
196 Esclangon did not publish the estimated errors of his evaluation, nor the estimated speed of the Earth. Esklangon ne opublikoval ni raschetnye oshibki ego ocenki, ni ozhidaemuyu skorost' Zemli.
197

198 Other evaluations were later obtained by Courvoisier using measurements made at München (19301931) and Breslau (19331935), with the following results: Drugie dannye byli pozdnee polucheny Kurvuaz'e s ispol'zovaniem izmerenii, provedennyh v Myunhene (1930-1931) i Breslavle (1933-1935), so sleduyushimi rezul'tatami:
199
München Breslau (1) Breslau (2)
A = 73 6 A = 92 12 A = 80 4
D = +40 (estimated)19 D = +44 25 D = +30 10
v = 889 93 km/s v = 927 200 km/s v = 700 60 km/s
Myunhen Breslavl' (1) Breslavl' (2)
A = 73 6 A = 92 12 A = 80 4
D = +40 (ocenka) 19 D = +44 25 D = +30 10
V = 889 93 km / s V = 927 200 km / s V = 700 60 km / s
200 The results obtained in the second Breslau series presented the smallest errors. Rezul'taty, poluchennye vo vtoroi serii Breslavlya, predstavleny naimen'shimi oshibkami.
201

202 In 1945, after his retirement, Courvoisier made a final series of observations from Basel. V 1945 godu, posle vyhoda na pensiyu, Kurvuaz'e vypolnil okonchatel'nye serii nablyudenii v Bazele.
203 He obtained the following results: On poluchil sleduyushie rezul'taty:
204 A = 60 14; D = +40 (estimated); v = 656 157 km/s A = 60 14 , D = +40 (ocenka), v = 656 157 km / s
205 {15} If we compare all the series of measurements, we notice that the right ascension varied between 60 and 104 (more than the estimated errors); the declination varied between 39 and 44 (within the estimated errors);20 and the speed varied between 652 and 927 km/s (within estimated errors). Esli sravnit' vse serii izmerenii, my zamechaem, chto pryamoe voshozhdenie var'irovalas' mezhdu 60 i 104 (bolee chem raschetnaya oshibka); sklonenie ot 39 do 44 (v predelah raschetnyh oshibok), 20 i skorost' ot 652 do 927 km / s (v predelah raschetnyh oshibok).
206 Notice that it is very hard to explain away Courvoisier's results as due to instrument errors, because the observed effect varied with periods of one sidereal day and half sidereal day. Obratite vnimanie, chto ochen' trudno ob'yasnit' rezul'taty Kurvuaz'e instrumental'nymi pogreshnostyami, tak kak nablyudaemyi effekt izmenyaetsya s periodami v odni zvezdnye sutki i polovinu zvezdnyh sutok.
207 All common causes of error (gravity changes, temperature changes, etc.) would vary with periods of one (or half) solar day. Vse rasprostranennye prichiny oshibok (izmeneniya sily tyazhesti, izmeneniya temperatury i t.d.) dolzhny menyat'sya s periodom v odni (ili polovinu) solnechnyh sutok.
208 Tidal influences due to the Moon would have periods that could also be easily distinguished from the effects predicted by Courvoisier. Prilivnye vliyaniya Luny budut imet' periody, kotorye takzhe mogut byt' legko otlichimy ot effektov, predskazannyh Kurvuaz'e.
209 Besides that, the data used by Courvoisier was obtained with different instruments at different places, and covered a time span of 80 years. Krome togo, dannye, ispol'zuemye Kurvuaz'e, byli polucheny s pomosh'yu razlichnyh instrumentov v raznyh mestah, i ohvatyvali promezhutok vremeni v 80 let.
210 The results presented by Courvoisier are therefore highly impressive and cannot be dismissed lightly. Rezul'taty, predstavlennye Kurvuaz'e, sledovatel'no, ves'ma vpechatlyaet i ne mogut byt' legko otvergnuty.
211

212
213 In the first method used by Courvoisier, the stars work as mere point-like light sources. V pervom metode, kotoryi ispol'zoval Kurvuaz'e, zvezdy ispol'zuyutsya kak prostye tochechnye istochniki sveta.
214 There is nothing peculiarly astronomical in the observed effect because, according to Courvoisier's theory, this was ascribed to the principle of the moving mirror. Tam net nichego specificheski astronomicheskogo v nablyudaemom effekte, potomu chto, soglasno teorii Kurvuaz'e, eto bylo opisano kak princip dvizhushegosya zerkala.
215 Therefore, similar effects should occur for terrestrial light sources, too. Takim obrazom, podobnye effekty dolzhny takzhe voznikat' i dlya nazemnyh istochnikov sveta.
216

217 Accordingly, Courvoisier was led to build a new instrument: an optical device for measuring absolute motion (.... 6).21 He used two small telescopes that were placed in an underground room where the temperature was fairly constant. Sootvetstvenno, Kurvuaz'e eto privelo k sozdaniyu novogo instrumenta:. opticheskogo ustroistva dlya izmereniya absolyutnogo dvizheniya (ris. 6) 21 On ispol'zoval dva nebol'shih teleskopa, kotorye byli razmesheny v podzemnom pomeshenii, gde temperatura byla dovol'no postoyannoi.
218 Both telescopes pointed obliquely (zenithal distance = 60) to a mercury mirror that was placed between them. Oba teleskopa byli nakloneny (zenitnoe rasstoyanie = 60 ) k rtutnomu zerkalu, kotoroe bylo pomesheno mezhdu nimi.
219 They were mounted in a vertical plane in the East-West direction. Oni byli ustanovleny v vertikal'noi ploskosti v napravlenii Vostok-Zapad.
220 One of the telescopes had a small electric light close to its reticule, and this was the light source that was observed from the second telescope. Odin iz teleskopov imel nebol'shoe elektricheskoe osveshenie vblizi ot ee kresta vizirnyh nitei, i eto bylo istochnikom sveta, kotoryi nablyudalsya vo vtoroi teleskop.
221 Both telescopes were first adjusted so that it was possible to see the reflection of the illuminated reticule of the first telescope from the second telescope. Oba teleskopa snachala byli nastroeny takim obrazom, chtoby mozhno bylo uvidet' otrazhenie osveshennoi setki iz pervoi truby ot vtorogo teleskopa.
222 They were then fastened in those directions. Zatem oni byli zakrepleny v etih napravleniyah.
223 Of course, the angles of the telescopes with the local vertical were sensibly equal. Konechno, ugly teleskopov s mestnoi vertikali byli ochevidno ravny.
224 The experiment did not try to measure any difference between those angles. Eksperiment ne pytalsya izmerit' kakoe-libo razlichie mezhdu etimi uglami.
225 It attempted to detect small periodical changes of the position of the image of the first telescope reticule as observed from the second one. On byl prednaznachen dlya obnaruzheniya nebol'shih periodicheskih izmenenii v polozhenii kresta vizirnyh nitei pervogo teleskopa, pri ih nablyudenii iz vtorogo teleskopa.
226 The apparent motion of {16} the reticule was measured with the aid of the ocular micrometer of the second telescope. Vidimoe dvizhenie perekrestiya bylo izmereno s pomosh'yu okulyarnogo mikrometra vtorogo teleskopa.
227

228 Using this device, Courvoisier made two series of observations in 1926 and 1927. S pomosh'yu etogo ustroistva Kurvuaz'e vypolnil dve serii nablyudenii v 1926 i 1927 godah.
229 Afterwards, he had a special instrument built for this purpose, and made a third series of observations in 1932. Vposledstvii, on postroil special'nyi instrument dlya etoi celi, i vypolnil tret'yu seriyu nablyudenii v 1932 godu.
230

231 In his first experiments the telescopes were placed in a vertical plane in the East-West direction. V ego pervyh eksperimentah teleskopy byli razmesheny v vertikal'noi ploskosti v napravlenii vostok-zapad.
232 In 1926 and 1928 Courvoisier built two new instruments that could be rotated. V 1926 i 1928 godah Kurvuaz'e postroil dva novyh instrumenta, kotorye mogli vrashat'sya.
233 He expected that this would improve his measurements. On ozhidal, chto eto budet sposobstvovat' uluchsheniyu ego izmerenii.
234 However, he found out that it was impossible to compare measurements when the device was rotated, due to mechanical problems, and the instruments could only be effectively used in a fixed position. Tem ne menee, on vyyasnil, chto okazalos' nevozmozhnym sravnivat' izmereniya, kogda ustroistvo povorachivalos', iz-za mehanicheskih problem, i instrumenty mogut byt' effektivno ispol'zovany tol'ko v fiksirovannom polozhenii.
235

236 The equation used to compute the effect was similar to that used in the case of the observation of stars, but instead of the North component of the speed, it was necessary to take into account the West component. Uravnenie, ispol'zuemoe dlya vychisleniya effekta, byl analogichno tomu, kotoroe ispol'zovalos' v sluchae nablyudeniya zvezd, no vmesto severnoi komponenty skorosti, bylo neobhodimo prinimat' vo vnimanie zapadnuyu komponentu.
237 As in the former case, the resulting equation has a constant term plus variable components with periods of one sidereal day and half sidereal day. Kak i v predydushem sluchae, rezul'tiruyushee uravnenie imeet postoyannyi chlen plyus peremennye sostavlyayushie s periodami v odni zvezdnye sutki i polovinu zvezdnyh sutok.
238

239
240 .... 6. Courvoisiers double telescope apparatus for measuring the motion of the Earth through the ether. Ris. 6. Dvoinoi teleskop Kurvuaz'e apparat dlya izmereniya dvizheniya Zemli cherez efir.
241

242 {17} Table 1. Measurements made by Courvoisier in 1926 with the double telescope instrument. Tablica 1. Izmereniya, vypolnennye v 1926 godu Kurvuaz'e s instrumentom v vide dvoinogo teleskopa.
243
First series:
Sidereal time 0 (z z') + constant number of measurements
0.32 h 0.08″ 21
1.23 h + 0.04″ 64
2.45 h + 0.07″ 14
3.31 h 0.38″ 56
4.28 h 0.38″ 14
5.28 h 0.57″ 68
7.37 h 0.58″ 55
9.29 h 0.57″ 64
11.24 h 0.24″ 30
12.73 h 0.04″ 20
21.91 h + 0.21″ 38
23.32 h + 0.08″ 45
Pervaya seriya:
Zvezdnoe vremya θ (z z′) + konstanta Kolichestvo izmerenii
0,32 ch 0.08 ″ 21
1,23 ch + 0.04 ″ 64
2,45 ch + 0,07 ″ 14
3,31 ch 0,38 ″ 56
4,28 ch 0,38 ″ 14
5,28 ch 0,57 ″ 68
7,37 ch 0,58 ″ 55
9,29 ch 0,57 ″ 64
11,24 ch 0,24 ″ +30
12,73 ch 0,04 ″ 20
21,91 ch + 0,21 ″ 38
23,32 ch + 0,08 ″ 45
244

245 Table 2. Measurements made by Courvoisier in 1927 with the double telescope instrument. Tablica 2. Izmereniya, vypolnennye v 1927 godu Kurvuaz'e s instrumentom v vide dvoinogo teleskopa.
246
Second series:
Sidereal time 0 (z z') + constant number of measurements
2.9 h + 1.54″ 4
7.3 h + 0.28″ 6
8.2 h + 0.28″ 7
9.1 h 0.01″ 7
10.1 h + 0.23″ 6
11.4 h + 0.56″ 5
12.3 h + 0.60″ 5
13.7 h + 0.52″ 7
15.5 h + 0.84″ 6
17.9 h + 0.88″ 7
19.9 h + 0.80″ 7
Vtoraya seriya:
Zvezdnoe vremya θ (z z′) + konstanta Kolichestvo izmerenii
2,9 ch + 1.54 4
7,3 ch + 0,28″ 6
8,2 ch + 0,28″ 7
9,1 ch 0,01″ 7
10.1 ch + 0,23″ 6
11.4 ch + 0,56″ 5
12.3 ch + 0,60″ 5
13,7 ch + 0,52″ 7
15,5 ch + 0,84″ 6
17,9 ch + 0,88″ 7
19,9 ch + 0,80″ 7
247

248 {18} The first series comprised 489 observations, and the second series only 67 observations. Pervaya seriya sostavila 489 nablyudenii, a vtoraya tol'ko 67 serii nablyudenii.
249 From the first series, Courvoisier computed the following values: Iz pervoi serii Kurvuaz'e vychislil sleduyushie znacheniya:
250 A = 70 6; D = +33 11; v = 493 54 km/s A = 70 6; D = +33 11; v = 493 54 km/s
251 From the second series, he obtained the results: Iz vtoroi serii on poluchil takie rezul'taty:
252 A = 22 6; D = +72 11; v = 606 45 km/s A = 22 6; D = +72 11; v = 606 45 km/s
253 Of course, the results obtained from the first series of measurements seemed more reliable than those from the second series, and they exhibited a closer agreement with former measurements. Konechno, rezul'taty, poluchennye v pervoi serii izmerenii predstavlyayutsya bolee nadezhnym, chem ot vtorogo serii, i oni pokazali bolee blizkoe sootvetstvie s prezhnimi izmereniyami.
254

255 Notice that, although those measurements attempted to detect the same kind of effects as the astronomical observations - that is, a difference between angle of incidence and angle of reflection in a moving mirror - the star observations used the North-South direction, and the cave experiments employed the East-West direction. Obratite vnimanie, chto, hotya eti izmereniya delali popytku obnaruzhit' takie zhe posledstviya, chto i astronomicheskie nablyudeniya to est', raznicu mezhdu uglom padeniya i uglom otrazheniya v dvizhushemsya zerkale zvezdnye nablyudeniya ispol'zovali napravlenie sever-yug, a eksperimenty v zakrytom pomeshenii ispol'zovali napravlenie vostok-zapad.
256 The equations were different, and nevertheless Courvoisier obtained a nice agreement between the new device and the former results. Uravneniya byli raznye, i tem ne menee Kurvuaz'e poluchil horoshee soglasie mezhdu novym ustroistvom i prezhnimi rezul'tatami.
257

258
259 In 1928 Courvoisier built another device to measure the speed of the Earth using the principle of the moving mirror. V 1928 g. Kurvuaz'e postroil drugoe ustroistvo dlya izmereniya skorosti Zemli s ispol'zovaniem principa dvizhushegosya zerkala.
260 Instead of using two telescopes, he used a single telescope, with two perpendicular mirrors in front of its objective (.... 7). Vmesto primeneniya dvuh teleskopov, on ispol'zoval odin teleskop, s dvumya perpendikulyarnymi zerkalami pered ego ob'ektivom (ris. 7).
261 The body of the telescope was placed in a horizontal position. Truba teleskopa byla razmeshena v gorizontal'nom polozhenii.
262 The mirrors were adjusted so that it was possible to observe the reflected image of the thread micrometer of the telescope in close coincidence with the real micrometer thread. Zerkala byli otregulirovany takim obrazom, chtoby mozhno bylo nablyudat' otrazhennoe izobrazhenie niti mikrometra teleskopa v blizkom sovpadenii s real'noi nit'yu mikrometra.
263 He predicted that the relative position of the image and the thread should undergo periodic fluctuations, and computed the predicted effect. On predskazal, chto otnositel'noe polozhenie izobrazheniya i niti dolzhno podvergat'sya periodicheskim kolebaniyam, i vychislil predskazannyi effekt.
264

265 From April to June 1928 Courvoisier obtained a series of 53 measurements, both in the North-South and in the East-West directions, and he computed the following values: S aprelya po iyun' 1928 g. Kurvuaz'e byla poluchena seriya iz 53 izmerenii, kak v napravlenii sever-yug, tak i vostok-zapad, i on vychislil sleduyushie znacheniya:
266 A = 74 1; D = +36 1; v = 496 10 km/s A = 74 1; D = +36 1; v = 496 10 km/s
267 The first series of measurements was made from 31 July and 6 August 1926, with observations spanning between 3 and 20 o'clock sidereal time; the second one, from 28 February to 29 May 1927, with observations covering the period from 21 to 13 o'clock sidereal time. Pervaya seriya izmerenii byla provedena s 31 iyulya i 6 avgusta 1926 goda, s nablyudeniyami, ohvatyvayushimi ot 3 do 20 chasov zvezdnogo vremeni; vtoraya seriya s 28 fevralya po 29 maya 1927 goda, s nablyudeniyami za period s 21 do 13 chasov zvezdnogo vremeni.
268 Both series comprised more than 500 measurements. Obe serii sostavili bolee 500 izmerenii.
269 Tables 1 and 2 shows the mean results obtained by Courvoisier for each sidereal time: V tablicah 1 i 2 pokazany srednie rezul'taty, poluchennye Kurvuaz'e dlya kazhdogo perioda zvezdnogo vremeni:
270

271
272 .... 7. Courvoisiers coupled mirror device for measuring the motion of the Earth through the ether. Ris. 7. Ustroistvo Kurvuaz'e so svyazannymi zerkalami dlya izmereniya dvizheniya Zemli otnositel'no efira.
273

274 {19} Courvoisiers new experiment was probably suggested by a similar arrangement that had been used by Esclangon in 1927.23 Novyi eksperiment Kurvuaz'e byl, veroyatno, podskazan podobnym ustroistvom, kotoroe bylo ispol'zovano Esklangonom v 1927 godu. 23
275 The French astronomer used two mirrors, but light underwent three reflections (.... 8). Francuzskii astronom ispol'zoval dva zerkala, no svet ispytyval tri otrazheniya (ris. 8).
276 The maximum effect occurred at 3 h or 15 h sidereal time, corresponding to A = 45 or 225. Maksimal'nyi effekt poyavlyalsya dlya 3 ch ili 15 ch zvezdnogo vremeni, chto sootvetstvuet A = 45 ili 225 .
277 Esclangon did not compute the speed of the Earth through the ether indeed, he did not even provide a definite interpretation of the phenomenon. Esklangon ne vychislyal skorost' Zemli cherez efir bolee togo, on dazhe ne obespechivayut opredelennuyu interpretaciyu yavleniya.
278
279 .... 8. Esclangons coupled mirror device for measuring the motion of the Earth through the ether (a), and a graphical representation of his results (b), showing the observed angular fluctuations as a function of sidereal time. Ris. 8. Ustroistvo Esklangona so svyazannymi zerkalami dlya izmereniya dvizheniya Zemli cherez efir (a) i graficheskoe predstavlenie ego rezul'tatov (b), pokazyvayushih nablyudaemye uglovye kolebaniya v zavisimosti ot zvezdnogo vremeni.
280

281
282 As described above, Courvoisier's second attempt to measure the absolute velocity of the Earth was grounded upon his analysis of the Lorentz contraction of the Earth (.... 9). Kak opisano vyshe, vtoraya popytka Kurvuaz'e izmerit' absolyutnuyu skorost' Zemli byla osnovana na ego analize sokrasheniya Lorenca dlya Zemli (ris. 9).
283 In this case, Courvoisier supposed that the local vertical would undergo a change, due to the Lorentz contraction of the Earth, and this change would be observable as a periodical fluctuation in the angle between the North Pole and the zenith, as a function of the sidereal time. V etom sluchae Kurvuaz'e predpolozhil, chto mestnaya vertikal' preterpit izmeneniya v svyazi s sokrasheniem Lorenca dlya Zemli, i eto izmenenie budet nablyudat'sya kak periodicheskoe kolebanie ugla mezhdu Severnym polyusom i zenitom, kak funkciya zvezdnoe vremya.
284

285 Courvoisier's theoretical analysis led him to predict that the variation of the zenithal distance Δz of a star close to the North Pole would obey the approximate relation: Teoreticheskii analiz Kurvuaz'e privel ego k predskazaniyu, chto izmenenie zenitnogo rasstoyaniya Δz blizosti zvezdy k Severnomu polyusu dolzhny podchinyat'sya priblizhennomu sootnosheniyu:
286 Δz = 1/2 αβ (11) Δz = 1/2 αβ (11)
287 {20} There are some special observational difficulties in this second method. Est' neskol'ko specificheskih trudnostei v nablyudenii dlya etogo vtorogo sposoba.
288 If it were possible to observe a star laying exactly in the direction of the celestial North Pole, the observation would be quite simple. Esli by mozhno bylo nablyudat' zvezdu, lezhashuyu tochno v napravlenii nebesnogo Severnogo polyusa, nablyudenie okazhetsya dovol'no prostym.
289 However, if the star is not exactly in the direction of the pole, its zenithal distance will depend on the sidereal time of the observation. Odnako, esli zvezda nahoditsya ne tochno v napravlenii polyusa, ee zenitnoe rasstoyanie budet zaviset' ot zvezdnogo vremeni nablyudeniya.
290 This classical large effect would have, therefore, a period of one sidereal day and would interfere with any attempt to measure any influence due to the motion through the ether with a period of one sidereal day. Etot klassicheskii bol'shoi effekt imeet, takim obrazom, period odni zvezdnye sutki, i on dolzhen pomeshat' lyuboi popytke izmerit' kakoe-libo vliyanie za schet dvizheniya cherez efir s periodom odin zvezdnyi den'.
291 Other interfering effects, such as temperature changes, vary with a period of about one solar day, and they are very large and irregular. Drugie meshayushie effekty, takie kak izmeneniya temperatury, izmenyayutsya s periodom priblizitel'no odin solnechnyi den', i oni ochen' bol'shie i neregulyarnye.
292 For those reasons, Courvoisier gave up the attempt of finding the amplitude of the sidereal day effect, and only computed the half sidereal day effect. Po etim prichinam, Kurvuaz'e ostavil popytku nahozhdeniya amplitudy effekta za zvezdnye sutki, i tol'ko vychislil effekt, svyazannyi s polovinoi zvezdnyh sutok.
293 It was impossible, therefore, to find all parameters, and he assumed a value of 40 for the declination, and computed the speed and right ascension of the motion of the Earth relative to the ether. Bylo nevozmozhno, takim obrazom, naiti vse parametry, i on predpolozhil znachenie 40 dlya skloneniya, i vychislil skorost' i pryamoe voshozhdenie dvizheniya Zemli otnositel'no efira.
294 Dropping out the component corresponding to the period of one sidereal day, he obtained the following equation: Otbrosiv komponentu, sootvetstvuyushuyu periodu v odin zvezdnyi den', on poluchil sleduyushee uravnenie:
295 Δz = (1/4)(v/c)2.sin 2ϕ (const. Δz = (1/4)(v/c)2.sin 2ϕ (const.
296 cos2D.cos2(θA)] (12) cos2D.cos2(θA)] (12)
297
298 {21} .... 9. Ris. 9.
299 According to Courvoisier, the Lorentz contraction of the Earth and of optical instruments could have a small observable influence on astronomical observations and terrestrial experiments. Soglasno Kurvuaz'e, sokrashenie Lorenca dlya Zemli i opticheskih priborov mozhet imet' nebol'shoe vliyanie na astronomicheskie nablyudeniya i nazemnye eksperimenty.
300 Using the data he had already obtained from 1914 to 1917, and combining those results with other measurements he made in 19211922 and 1925-1926, with the same instrument, Courvoisier obtained the following result: Ispol'zuya dannye, kotorye on uzhe poluchil s 1914 po 1917 gg. i ob'ediniv eti rezul'taty s drugimi izmereniyami, kotorye on sdelal v 19211922 i 19251926 gg. s tem zhe instrumentom, Kurvuaz'e poluchil sleduyushii rezul'tat:
301 A = 74 3; [D = +40]; v = 587 48 km/s A = 74 3; [D = +40]; v = 587 48 km/s
302 He also analyzed measurements that had been obtained in routine observations at the Paris observatory, in the period 1899-1901. All those series of observations exhibited similar variations with a period of 12 sidereal hours. On takzhe proanaliziroval izmereniya, kotorye byli polucheny v regulyarnyh nablyudeniyah v Parizhskoi observatorii v period 18991901 gg. Vse eti serii nablyudenii pokazali pohozhie variacii s periodom 12 zvezdnyh chasov.
303 Assuming a value of 40 for the declination, he obtained the following results: Predpolozhiv znachenie 40 dlya skloneniya, on poluchil sleduyushie rezul'taty:
304 A = 70 11; [D = +40]; v = 810 166 km/s A = 70 11; [D = +40]; v = 810 166 km/s
305 Afterwards Courvoisier also computed the motion of the Earth using measurements from Breslau (19231925 and 19331935) and from München (1927-1931). Vposledstvii Kurvuaz'e takzhe vychislil dvizhenie Zemli po izmereniyam v Breslavle (19231925 i 19331935) i v Myunhene (19271931).
306 Taking into account all the observations, he obtained the following final result: Prinimaya vo vnimanie vse nablyudeniya, on poluchil sleduyushii okonchatel'nyi rezul'tat:
307 A = 65 10; [D = +40]; v = 574 97 km/s A = 65 10; [D = +40]; v = 574 97 km/s
308 {22}
309 The effects predicted by Courvoisier as a consequence of the Lorentz contraction of the Earth should depend on the latitude of the observatory. Effekty, predskazannye Kurvuaz'e kak sledstvie sokrashenie Lorenca dlya Zemli, dolzhny zaviset' ot shiroty observatorii.
310 For that reason, if the same set of stars was observed from two observatories at very different latitudes, there should exist a systematic difference between the measured declinations of the stars, as a function of sidereal time. Po etoi prichine, esli tot zhe nabor zvezd nablyudalsya iz dvuh observatorii, raspolozhennyh na ochen' raznyh shirotah, dolzhny sushestvovat' sistematicheskie razlichiya mezhdu izmerennymi skloneniyami zvezd, kak funkciya ot zvezdnogo vremeni.
311 To test the existence of this effect, Courvoisier analyzed the catalogues containing measurements made at Heidelberg (ϕ1 = + 49.24) and at Cape Town, South Africa (ϕ2 = 33.48). Chtoby proverit' sushestvovanie etogo effekta, Kurvuaz'e proanaliziroval katalogi, soderzhashie izmereniya, vypolnennye v Geidel'berge (ϕ1 = + 49.24) i v Keiptaune, Yuzhnaya Afrika (ϕ2 = 33.48).
312 Let D1 be the declination of some star measured from Heidelberg, and D2 the declination of the same star measured from Cape of Good Hope. Pust' D 1 sklonenie nekotoroi zvezdy, izmerennoe v Geidel'berge, a D 2 sklonenie toi zhe zvezdy, izmerennoe na myse Dobroi Nadezhdy.
313 Each declination, according to Courvoisier's analysis, undergoes a periodical change: Kazhdoe sklonenie, soglasno analizu Kurvuaz'e, preterpevaet periodicheskie izmeneniya:
314 Δz1 = 1/2 α1β1 Δz2 = 1/2 α2β2 (13) Δz1 = 1/2 α1β1 Δz2 = 1/2 α2β2 (13)
315 Those effects are not equal; therefore, the difference between the declinations measured at the two observatories should undergo a periodical change: Eti effekty ne ravny, i poetomu raznica mezhdu skloneniyami, izmerennymi dlya dvuh observatorii, dolzhna podvergat'sya periodicheskomu izmeneniyu:
316 D1 D2 = 1/21β1 α2β2) (14) D1 D2 = 1/21β1 α2β2) (14)
317 Using the typical values A=75 and D=40 obtained in former measurements, and taking into account the latitudes of Heidelberg and Cape Town, Courvoisier predicted that there should exist a difference between the measured declinations of the stars that should depend on their right ascension a: Ispol'zuya tipichnye znacheniya A=75 i D=40, poluchennye v predydushih izmereniyah i s uchetom shiroty Geidel'berge i Keiptauna, Kurvuaz'e predskazal, chto dolzhna sushestvovat' raznica mezhdu izmerennym skloneniem zvezd, kotorye dolzhny zaviset' ot ih pryamogo voshozhdeniya:
318 D1 D2 = + 0.16′′ 0.18′′. D1 D2 = + 0.16′′ 0.18′′.
319 cos (α 5h) 0.16′′. cos (α 5h) 0.16′′.
320 cos 2(α 5h) (15) cos 2(α 5h) (15)
321 The amplitude was obtained by comparing the astronomical data of the two observatories, and led to v =750 km/s. Amplituda byla poluchena putem sopostavleniya astronomicheskih dannye dvuh observatorii, i privela k V = 750 km / s.
322 Table 3 contains Courvoisiers comparison between the observed and predicted values of D1D2. V tablice 3 privedeny sravneniya Kurvuaz'e v period mezhdu nablyudaemym i prognoziruemym znacheniyam D1D2.
323 The third column of the table presented the observed values corrected for null declination, in order to avoid classical errors due to atmospheric refraction, etc. V tret'em stolbce tablicy predstavleny nablyudaemye znacheniya s popravkoi na nulevoe sklonenie, dlya togo, chtoby izbezhat' klassicheskih oshibok, svyazannyh s atmosfernoi refrakciei i t.d.
324 There is a better agreement between the theoretical prediction and the corrected values than with the raw data. Sushestvuet luchshee soglasie mezhdu teoreticheskimi predskazaniyami i skorrektirovannymi znacheniyami, chem s syrymi dannymi.
325
326 In his analysis of the second method, Courvoisier assumed that the Lorentz contraction of the Earth produces a local periodical change of the direction of the gravitational field. V svoem analize vtorogo sposoba Kurvuaz'e predpolagal, chto sokrashenie Lorenca dlya Zemli sozdaet lokal'noe periodicheskoe izmenenie napravleniya gravitacionnogo polya.
327 This effect was not compensated by changes in the direction of the astronomical instruments. Etot effekt ne kompensiruetsya za schet izmeneniya napravleniya astronomicheskih instrumentov.
328 Therefore, he was led to think that the effect could also be detected in an experiment using a terrestrial light source. Takim obrazom, on prishel k mneniyu, chto effekt mozhet byt' takzhe obnaruzhen v hode eksperimenta s ispol'zovaniem nazemnogo istochnika sveta.
329 {23} He placed a mercury mirror directly below the observatory meridian circle and pointed the telescope downward. On pomestil rtutnoe zerkalo neposredstvenno pod meridian observatorii i napravil teleskopa vniz.
330 The instrument was then delicately adjusted in such a way that it was possible to observe the reflected image of the micrometer threads superimposed to the real threads. Pribor byl zatem tonko otregulirovan takim obrazom, chtoby mozhno bylo nablyudat' otrazhennoe izobrazhenie nitei mikrometra, nalozhennye na real'nye niti.
331 The position of the telescope was locked, and observations were made of the relative displacement of the micrometer thread and its image. Polozhenie teleskopa bylo zafiksirovano, i byli vypolneny nablyudeniya otnositel'nogo smesheniya niti mikrometra i ee otrazheniya.
332 He predicted the following deflection in the East-West direction: On predskazal sleduyushie otkloneniya v napravlenii vostok-zapad:
333 Δz = (1/4)(v/c)2. Δz = (1/4)(v/c)2.
334 [sin ϕ.sin2D.sin (θA) + cos ϕ.cos2D.sin 2(θA)] (16) [sin ϕ.sin2D.sin (θA) + cos ϕ.cos2D.sin 2(θA)] (16)
335 Table 3. Tablica 3.
336 Difference between the declinations of a star (D1D2), observed from two distant observatories, as a function of sidereal time α. Razlichie mezhdu skloneniyami zvezd (D1D2), nablyudaemoe iz dvuh udalennyh observatorii, kak funkciya ot zvezdnogo vremeni α.
337
αD1D2

observed observed (corrected) prediction
0 h + 0.35′′ + 0.35′′ + 0.26′′
1 h + 0.21′′ + 0.21′′ + 0.16′′
2 h + 0.01′′ + 0.01′′ + 0.04′′
3 h 0.07′′ 0.07′′ 0.07′′
4 h 0.17′′ 0.17′′ 0.16′′
5 h + 0.03′′ + 0.03 0.17′′
6 h + 0.17′′ + 0.17 0.14′′
7 h 0.03′′ 0.03′′ 0.06′′
8 h + 0.07′′ + 0.07′′ + 0.04′′
9 h + 0.10′′ + 0.10′′ + 0.14′′
10 h + 0.08′′ + 0.08′′ + 0.25′′
11 h + 0.09′′ + 0.09′′ + 0.32′′
12 h + 0.29′′ + 0.29′′ + 0.34′′
13 h + 0.32′′ + 0.35′′ + 0.32′′
14 h + 0.29′′ + 0.39′′ + 0.29′′
15 h 0.04′′ + 0.22′′ + 0.25′′
16 h 0.21′′ + 0.13′′ + 0.20′′
17 h 0.23′′ + 0.18′′ + 0.19′′
18 h 0.29′′ + 0.12′′ + 0.20′′
19 h 0.31′′ + 0.10′′ + 0.23′′
20 h 0.17′′ + 0.17′′ + 0.29′′
21 h + 0.04′′ + 0.30′′ + 0.33′′
22 h + 0.26′′ + 0.36′′ + 0.34′′
23 h + 0.38′′ + 0.41′′ + 0.32′′
αD1D2

Nablyudenie Nablyudenie (skorrektirovano) Predskazanie
0 ch + 0.35′′ + 0.35′′ + 0.26′′
1 ch + 0.21′′ + 0.21′′ + 0.16′′
2 ch + 0.01′′ + 0.01′′ + 0.04′′
3 ch 0.07′′ 0.07′′ 0.07′′
4 ch 0.17′′ 0.17′′ 0.16′′
5 ch + 0.03′′ + 0.03 0.17′′
6 ch + 0.17′′ + 0.17 0.14′′
7 ch 0.03′′ 0.03′′ 0.06′′
8 ch + 0.07′′ + 0.07′′ + 0.04′′
9 ch + 0.10′′ + 0.10′′ + 0.14′′
10 ch + 0.08′′ + 0.08′′ + 0.25′′
11 ch + 0.09′′ + 0.09′′ + 0.32′′
12 ch + 0.29′′ + 0.29′′ + 0.34′′
13 ch + 0.32′′ + 0.35′′ + 0.32′′
14 ch + 0.29′′ + 0.39′′ + 0.29′′
15 ch 0.04′′ + 0.22′′ + 0.25′′
16 ch 0.21′′ + 0.13′′ + 0.20′′
17 ch 0.23′′ + 0.18′′ + 0.19′′
18 ch 0.29′′ + 0.12′′ + 0.20′′
19 ch 0.31′′ + 0.10′′ + 0.23′′
20 ch 0.17′′ + 0.17′′ + 0.29′′
21 ch + 0.04′′ + 0.30′′ + 0.33′′
22 ch + 0.26′′ + 0.36′′ + 0.34′′
23 ch + 0.38′′ + 0.41′′ + 0.32′′
338 {24} Courvoisier made two series of observations: 22-24 October and 22-25 November 1922. Kurvuaz'e vypolnil dve serii nablyudenii: 2224 oktyabrya i 2225 noyabrya 1922 goda.
339 He noticed that temperature changes affected the position of the telescope, and that this influence had to be taken into account. On zametil, chto izmeneniya temperatury povliyalo na polozhenie teleskopa, prichem vliyanie eto dolzhno byt' prinyato vo vnimanie.
340 From the uncorrected observed measurements he computed the following values: Iz nablyudaemyh neispravlennyh izmerenii on vychislil sleduyushie znacheniya:
341 A = 74 10; D = +67 13; v = 920 73 km/s A = 74 10; D = +67 13; v = 920 73 km/s
342 Applying a temperature correction, he obtained the following results: Primenyaya korrekciyu temperatury, on poluchil sleduyushie rezul'taty:
343 A = 98 7; D = +25 11; v = 500 47 km/s A = 98 7; D = +25 11; v = 500 47 km/s
344 This experiment was repeated by August Kopff, of the Heidelberg observatory, from 10 to 29 June 1923. Etot eksperiment byl povtoren Avgustom Kopfom iz Geidel'bergskoi observatorii s 10 po 29 iyunya 1923 goda.
345 As in the case of Courvoisier's experiment, there was a strong effect due to temperature changes (temperature varied between +6C and +17C). Kak i v sluchae eksperimenta Kurvuaz'e, ne bylo sil'nogo effekta v rezul'tate izmeneniya temperatury (temperatura kolebalas' ot +6 S do +17C).
346 Courvoisier analyzed Kopff s data assuming the values A = 75 and D = +40. Kurvuaz'e proanaliziroval dannye Kopfa, prinyav znacheniya A = 75 i D = +40.
347 After applying temperature corrections, he obtained a speed of 753 57 km/s. Posle primeneniya temperaturnyh popravok, on poluchil skorost' 753 57 km/s.
348
349 Courvoisier also attempted to detect the motion of the Earth relative to the ether by other methods. Kurvuaz'e takzhe popytalsya obnaruzhit' dvizhenie Zemli otnositel'no efira drugimi metodami.
350 He regarded the positive result of the nadir observation method as a confirmation of his hypothesis that the Lorentzs contraction produced an observable periodical change of the local vertical. On schital polozhitel'nymi rezul'taty nablyudeniya nadira kak podtverzhdenie svoei gipotezy, chto sokrashenie Lorenca proizvodit nablyudaemye periodicheskie izmeneniya mestnoi vertikali.
351 He soon devised other ways of observing such an effect. Vskore on razrabotal drugie sposoby nablyudeniya takogo effekta.
352
353 One of the instruments he used was a plumb line attached to one of the columns of the Babelsberg observatory. Odnim iz ispol'zuemyh im instrumentov byl otves, prikreplennyi k odnoi iz opor Babel'sbergskoi observatorii.
354 The main body of the plumb line was a metallic rod, 95 cm long. Osnovnym telom linii otvesa byl metallicheskii sterzhen', 95 sm v dlinu.
355 At its lower end there was a mark that was illuminated and projected upon a wall. Na ego nizhnem konce byla otmetka, kotoraya byla osveshena i proecirovalas' na stenu.
356 It was possible to observe deflections of about 0.05″ of the direction of the plumb line, in the East-West direction.24 Mozhno bylo nablyudat' otkloneniya napravleniya otvesa primerno na 0,05″ v napravlenii vostok-zapad. 24
357 Measurements made in 1925 with this instrument led to a speed of the Earth of about 400 km/s, assuming A = 75 and D = +40. Izmereniya, provedennye v 1925 godu s etim instrumentom pokazali skorost' Zemli okolo 400 km/s, pri A = 75 i D = +40 .
358 In 1931 Courvoisier improved this instrument observing the motion of its tip with the aid of a microscope (.... 10). V 1931 godu Kurvuaz'e usovershenstvoval etot instrument, nablyudaya za dvizheniem ego konca s pomosh'yu mikroskopa (ris. 10).
359 Now he was able to compute the three parameters of the Earth's motion, obtaining: Teper' on byl v sostoyanii vychislit' tri parametra dvizheniya Zemli, poluchiv:
360 A = 64 6; D = +50 9; v = 367 29 km/s A = 64 6; D = +50 9; v = 367 29 km/s
361
362 {25}.... 10. Ris. 10.
363 Courvoisiers plumb line apparatus for measuring oscillations of the local gravitational vertical due to Lorentz contraction. Otves Kurvuaz'e dlya izmereniya kolebanii mestnoi gravitacionnoi vertikali iz-za sokrasheniya Lorenca.
364 Similar observations were made by Esclangon, with the help of André-Louis Danjon, using two horizontal pendulums with perpendicular motions.25 Analogichnye nablyudeniya vypolnil Eksklangon s pomosh'yu Andre-Lui Danzhona, ispol'zuya dva gorizontal'nyh mayatnika s perpendikulyarnymi dvizheniyami 25
365 One of the pendulums lead to A=69; for the second pendulum, A=52 Esclangon did not provide other information and did not attempt to compute the speed of the Earth. Odin iz mayatnikov pokazal A=69 ;. dlya vtorogo mayatnika A = 52, Esklangon ne predostavil drugie svedeniya i ne pytalsya vychislit' skorost' Zemli.
366 {26}
367 Another way of observing the variation of the local vertical direction, according to Courvoisier, was with the aid of bubble levels.26 Drugoi sposob nablyudeniya za izmeneniem napravleniya mestnoi vertikali, po Kurvuaz'e, byl vypolnen s pomosh'yu puzyr'kovyh urovnei. 26
368 He used two very sensitive level meters. On ispol'zoval dva ochen' chuvstvitel'nyh urovnemerov.
369 One of them was attached to the floor of the Babelsberg underground clock room, and the other one was attached in a horizontal position to one of the columns of the same room. Odin iz nih byl prikreplen k polu Babel'sbergskoi podzemnoi komnaty s chasami, a drugoi byl prikreplen v gorizontal'nom polozhenii k odnoi iz opor etoi zhe komnaty.
370 Courvoisier measured the difference between the marks of the two level meters. Kurvuaz'e izmerili raznicu mezhdu otmetkami dvuh urovnemerov.
371 The maximum predicted effect was about 0.30″, and with the delicate instruments used by Courvoisier it was possible to measure angular changes as small as 0,03″. Maksimal'nyi ozhidaemyi effekt sostavil okolo 0,30″, i s tochnymi instrumentami, ispol'zuemymi Kurvuaz'e, mozhno bylo izmerit' uglovye izmeneniya velichinoi do 0,03″.
372 In the first series of measurements between 15 and 26 June 1929, Courvoisier obtained the following results: V pervoi serii izmerenii mezhdu 15 i 26 iyunya 1929 goda, Kurvuaz'e byli polucheny sleduyushie rezul'taty:
373 A = 59 6; D = +51 9; v = 446 34 km/s A = 59 6; D = +51 9; v = 446 34 km/s
374
375 According to Courvoisier's hypothesis, the Earth undergoes a real contraction in the direction of its motion through the ether, and this contraction would produce observable periodical changes of the local value of gravity as a function of sidereal time. Soglasno gipoteze Kurvuaz'e, Zemlya podvergaetsya real'nym sokrasheniem v napravlenii ee dvizheniya cherez efir, i eto sokrashenie budet proizvodit' nablyudaemye periodicheskie izmeneniya mestnogo znachenie sily tyazhesti v zavisimosti ot zvezdnogo vremeni.
376 Pendulum clocks at different places of the Earth should show slightly different readings, and their phases should exhibit a periodical relative fluctuation. Mayatnikovye chasy v raznyh mestah Zemli dolzhny pokazyvat' nemnogo razlichnye znacheniya, a ih fazy dolzhny obladat' otnositel'noi periodichnost'yu kolebanii.
377 Courvoisier analyzed data on pendulum clocks of different astronomical observatories, in an attempt to detect this effect. Kurvuaz'e proanaliziroval dannye o mayatnikovyh chasah razlichnyh astronomicheskih observatorii v popytke obnaruzhit' etot effekt.
378 Using radio signals it was possible to compare the rates of clocks at very distant observatories. Ispol'zuya radiosignaly, mozhno sravnit' hod chasov dlya vzaimno ochen' otdalennyh observatorii.
379 The Annapolis Observatory emitted regular time signals from its pendulum clocks. Observatoriya Annapolisa translirovala regulyarnye signaly vremeni ot svoih mayatnikovyh chasov.
380 It was possible to compare the rate of those pendulums to those at another place. Mozhno bylo sravnit' skorost' ih mayatnika tam i v drugom meste.
381 Courvoisier asked the help of Bernhard Wanach, from Potsdam, who compared the rate of the pendulum clocks of that observatory to the signals received from Annapolis, from September 1921 to November 1922.27 Courvoisiers analysis of Wanachs data led to the following results: Kurvuaz'e poprosil pomoshi Bernharda Vanaha iz Potsdama, kotoryi sravnil skorost' mayatnikovyh chasov etoi observatorii s signalami iz Annapolisa s sentyabrya 1921 po noyabr' 1922 g. 27 Analiz Kurvuaz'e dannyh Vanaha privel k sleduyushim rezul'tatam:
382 A = 56 12; D = +40 (estimated); v = 873 228 km/s A = 56 12; D = +40 (ocenka); v = 873 228 km/s
383 Afterwards, a comparison was made using a comparison between the clocks of Annapolis, Potsdam, Ottawa, and Bordeaux. Posle etogo bylo provedeno sravnenie pri pomoshi sopostavleniya mezhdu chasami v Annapolise, Potsdame, Ottave i Bordo.
384 The mean result obtained by Courvoisier was: Srednii rezul'tat, poluchennyi Kurvuaz'e, byl:
385 A = 81 5; D = +34 5; v = 650 50 km/s A = 81 5; D = +34 5; v = 650 50 km/s
386 {27} Much later, Courvoisier presented another confirmation of this effect. Mnogo pozzhe, Kurvuaz'e predstavil eshe odno podtverzhdenie etogo effekta.
387 He compared the catalogues of time correction of the observatories of Greenwich, Potsdam, Buenos Aires and Mount Stromslo for the period from 1948 to 1954.28 On sravnil katalogi vremennoi korrekcii observatorii Grinvicha, Potsdama, Buenos-Airesa i Maunt-Stromlo za period s 1948 po 1954 god. 28
388 There was a nice agreement between the theoretical predictions and the observed time differences, especially in the case of the years 1951-1954. Bylo vyyavleno horoshee soglasie mezhdu teoreticheskimi predskazaniyami i nablyudaemymi razlichiyam vremeni, osobenno v sluchae dannyh za 19511954 gody.
389
390 Courvoisier supposed that the rate of pendulum clocks would vary because of the periodical gravity changes, but mechanical chronometers should not suffer similar changes. Kurvuaz'e predpolagal, chto skorost' mayatnikovyh chasov budet menyat'sya v rezul'tate periodicheskih izmenenii sily tyazhesti, no mehanicheskie hronometry ne dolzhny byt' podverzheny podobnym izmeneniyam.
391 Therefore it should be possible to observe effects due to the absolute motion of the Earth comparing pendulum clocks to mechanical chronometers at a single place. Poetomu dolzhna byt' vozmozhnost' nablyudat' effekty, svyazannye s absolyutnym dvizheniem Zemli, putem sravneniya mayatnikovyh chasov i mehanicheskogo hronometra v odnom meste.
392 Comparisons were made both at Babelsberg and at Potsdam (with the help of Wanach). Sravneniya byli sdelany v Babel'sberge i v Potsdame (s pomosh'yu Vanaha).
393 In his analysis, Courvoisier assumed the value D = +40 and obtained A = 104 9 and v = 750 km/s. V svoem analize Kurvuaz'e predpolagal znachenie D = +40 i poluchil A = 104 9 i v = 750 km/s.
394
395 If the Lorentz contraction of the Earth produces gravitational effects, then it should be possible to find its influence on the tides. Esli sokrashenie Lorenca dlya Zemli proizvodit gravitacionnye effekty, to dolzhno byt' vozmozhnost' naiti ih vliyanie na prilivy i otlivy.
396 Esclangon analyzed a set of 166,500 tide measurements, made at Pola, on the Adriatic sea, from 1898 to 1916. Esklangon proanaliziroval nabor 166500 izmereniya priliva, sdelannye v Pula, na poberezh'e Adriaticheskogo morya, s 1898 po 1916 god.
397 He obtained a term with the period of on sidereal day, that could not be associated with the Sun or the Moon, and ascribed it to a dissymmetry of space.29 On poluchil element s periodom v zvezdnye sutki, kotorye ne mogut byt' svyazany s Solncem ili Lunoi, i otnes ego k asimmetrii prostranstva 29
398 This tidal effect could be described as: Etot prilivnoi effekt mozhet byt' opisan kak:
399 48 mm.cos (t 146.1) + 25 mm.cos (t 244.6) (16) 48 mm.cos (t 146.1) + 25 mm.cos (t 244.6) (16)
400 If the local gravity undergoes periodic changes, it should be possible to detect this effect with sensitive gravimeters. Esli lokal'naya sila tyazhesti preterpevaet periodicheskie izmeneniya, dolzhna byt' vozmozhnost' obnaruzhit' etot effekt chuvstvitel'nymi gravimetrami.
401 In 1927 Courvoisier (with the help of Sergei Gaposchkin) attempted for the first time to measure gravity variations using a very sensitive torsion gravimeter.30 V 1927 g. Kurvuaz'e (s pomosh'yu Sergeya Gaposhkina) vpervye popytalsya dlya izmereniya variacii sily tyazhesti primenit' ochen' chuvstvitel'nyi gravimetr krucheniya. 30
402 The instrument could detect a change Δg/g of 3×106, corresponding to a displacement of 0.2 mm of the gravimeter pointer. Etot instrument mog obnaruzhit' izmenenie Δg/g of 3×106, chto sootvetstvuet smesheniyu 0,2 mm ukazatelya gravimetra.
403 From a series of measurements undertaken from 1927 to 1928 Courvoisier computed the following values: Iz serii izmerenii, vypolnennyh s 1927 po 1928 gg. Kurvuaz'e vychislil sleduyushie znacheniya:
404 A = 62 5; D = +32 8; v = 543 55 km/s A = 62 5; D = +32 8; v = 543 55 km/s
405 {28} In 1932 Courvoisier obtained new results, taking into account in this new paper some effects due to temperature and humidity. V 1932 g. Kurvuaz'e byli polucheny novye rezul'taty, prinimayushie vo vnimanie v etoi novoi rabote effekty, svyazannye s temperaturoi i vlazhnost'yu.
406 The new results obtained by him were Novye rezul'taty, poluchennye im, sostavili
407 A = 50 7; D = +45 18; v = 498 78 km/s A = 50 7; D = +45 18; v = 498 78 km/s
408 For the first time, Courvoisier's results were criticized and checked. Vpervye rezul'taty Kurvuaz'e kritikovalis' i byli provereny.
409 In 1932, Rudolf Tomaschek and Walter Schaffernicht reported gravity measurements made with a new kind of gravimeter that was able to detect changes Δg/g of 108. V 1932 godu Rudol'f Tomashek i Uolter Shafferniht soobshili ob izmereniyah sily tyazhesti novym vidom gravimetra, kotoryi byl v sostoyanii obnaruzhit' izmeneniya Δg/g poryadka 108.
410 The instrument was placed inside a cave in a mountain, where the temperature was constant to 0.001 C. Pribor byl pomeshen v peshere v gorah, gde temperatura byla postoyannoi do 0,001 C.
411 No effect of the order of magnitude predicted by Courvoisier was observed.31 Effekt togo poryadka, kotoryi byl predskazan Kurvuaz'e, ne nablyudalsya. 31
412
413 It is well known that in 1879 James Clerk Maxwell wrote to David Peck Todd asking him about the possibility of computing the velocity of the solar system through the ether using available data on occultation of Jupiters satellites.32 Horosho izvestno, chto v 1879 godu Dzheims Klerk Maksvell pisal Devidu Pekku Toddu, sprashivaya ego o vozmozhnosti vychisleniya skorosti Solnechnoi sistemy cherez efir, s ispol'zovaniem imeyushihsya dannyh o zatmeniya sputnikov Yupitera. 32
414 Maxwell supposed that the motion of the solar system would produce an anisotropy of the speed of light that could be detected as a fluctuation of the times of occultation of Jupiter's satellites, observed from the Earth, with a period of about 12 years. Maksvell predpolozhil, chto dvizhenie Solnechnoi sistemy dolzhno proizvodit' anizotropiyu skorosti sveta, kotoraya mozhet byt' obnaruzhena kak fluktuaciya vremeni pokrytiya sputnikov Yupitera, nablyudaemyh s Zemli, s periodom okolo 12 let.
415 Todd answered, however, that the measurements available at that time were not precise enough for such computations. Todd otvetil, odnako, chto izmereniya, provodimye v to vremya, ne byli dostatochno tochny dlya takih vychislenii.
416 In 1930 Courvoisier published a paper where he presented an analysis of available observations of Jupiter's satellites and claimed that they led to a new determination of the velocity of the solar system relative to the ether.33 V 1930 Kurvuaz'e opublikoval stat'yu, gde on predstavil analiz imeyushihsya nablyudenii sputnikov Yupitera i utverzhdal, chto oni priveli k novomu opredeleniyu skorosi Solnechnoi sistemy otnositel'no efira. 33
417 He used data relative to the three inner Galilean satellites published by the Johannesbourg observatory (19081926), comparing those measurements to those of the observatories of Cape Town, Greenwich and Leyden (1913 1924). On ispol'zoval dannye treh vnutrennih galileevyh sputnikov, opublikovannye observatoriei v 'ohannesburge (19081926), sravnivaya eti izmereniya s analogichnymi iz observatorii Keiptauna, Grinvicha i Leidena (19131924).
418 He confirmed Maxwell's anticipation of a fluctuation with a period of about 12 years and obtained the following results: On podtverdil ozhidaniya Maksvella o nalichii kolebanii s periodom okolo 12 let, i poluchil sleduyushie rezul'taty:
419 A = 126 10; D = +20; v = 885 100 km/s A = 126 10; D = +20; v = 885 100 km/s
420
421 According to the theory of ether accepted by Courvoisier, the speed of light is constant relative to the ether, but could not be constant relative to the {29} Earth: there should be an observable anisotropy of the speed of light due to the absolute motion of the Earth. Soglasno teorii efira, prinyatoi Kurvuaz'e, skorost' sveta postoyanna otnositel'no efira, no ne mozhet byt' postoyannoi otnositel'no Zemli: dolzhna nablyudat'sya anizotropiya skorosti sveta pri absolyutnom dvizhenii Zemli.
422 He assumed that this would produce an observable difference in measurements of stellar aberration observed in different directions.34 On predpolozhil, chto ono dolzhno proizvesti nablyudaemye razlichiya v izmereniyah zvezdnoi aberracii, kotoraya nablyudaetsya v raznyh napravleniyah 34
423 Using the available data, Courvoisier obtained the following results: Na osnovanii imeyushihsya dannyh, Kurvuaz'e poluchil sleduyushie rezul'taty:
424 A = 112 20; D = +47 20; v = 600 305 km/s A = 112 20; D = +47 20; v = 600 305 km/s


[Citirovat'][Otvetit'][Novoe soobshenie]
Forumy >> Obsuzhdenie publikacii Astroneta
Spisok  /  Derevo
Zagolovki  /  Annotacii  /  Tekst

Astronet | Nauchnaya set' | GAISh MGU | Poisk po MGU | O proekte | Avtoram

Kommentarii, voprosy? Pishite: info@astronet.ru ili syuda

Rambler's Top100 Yandeks citirovaniya