args[0]=message
args[1]=DB::DB::Message=HASH(0x4730670)
Volnovaya model' gravitacii
2.11.2016 17:47 | V. Sh. Yanbikov
Volnovaya model' gravitacii Avtor: Yanbikov Vil'dyan Shavkyatovich, g. Volgograd Annotaciya: Postroena fenomenologicheskaya volnovaya model' gravitacionnogo vzaimodeistviya veshestva kosmosa. Poluchena formula gravitacionnogo vzaimodeistviya mezhdu tyagoteyushimi massami. Poluchena formula gravitacionnogo prityazheniya mezhdu protonami na ochen' blizkom rasstoyanii mezhdu nimi. Pust' dva protona nahodyatsya na rasstoyanii R drug ot druga i nepodvizhny otnositel'no absolyutnogo kosmicheskogo prostranstva (ris.1). Pri etom veshestvo Vselennoi razdrobleno na protony. Protony Vselennoi nahodyatsya v sostoyanii svobodnogo padeniya, chto yavlyaetsya idealizaciei real'nogo sostoyaniya veshestva vo Vselennoi. Rassmotrim volnovuyu model' gravitacionnogo vzaimodeistviya mezhdu nepodvizhnymi protonami. Oboznachim eti protony kak A i V (ris.1). Na protony A i V so vseh storon v predelah telesnogo ugla 4π padayut volny vysokochastotnogo gravitacionnogo polya ot veshestva beskonechnogo kosmicheskogo prostranstva. V moei issledovatel'skoi rabote po ekranirovaniyu gravitacii v kosmose bylo polucheno vyrazhenie dlya napryazhennosti gravitacionnogo polya ot beskonechnogo kosmicheskogo poluprostranstva g = 3/2 γ πm/σ ; gde γ gravitacionnaya postoyannaya, π = 3.14 , m - massa pokoya protona, σ sechenie ekranirovaniya vysokochastotnyh voln gravitacii protonom nahodyashemsya v svobodnom padenii v kosmicheskom prostranstve. Primem σ = πdd/4 ; gde d = 3*10 15 m diametr protona. Padayushie iz kosmosa VCh gravitacionnye volny nakachivayut protony A i V gravitacionnoi energiei. Dlya sohraneniya energeticheskogo balansa, protony A i V izluchayut izbytochnuyu energiyu v kosmicheskoe prostranstvo v predelah telesnogo ugla 4π v vide sfericheski simmetrichnyh gravitacionnyh volnovyh frontov. Eti volnovye fronty, pri padenii na protony kosmosa, okazyvayut silovoe vozdeistvie na eti protony. Rassmotrim silovoe vzaimodeistvie mezhdu protonami A i V. Pust' v nekotoryi moment vremeni proton A izluchil sfericheski simmetrichnyi volnovoi front s energiei ε0 . Cherez nekotoroe vremya etot volnovoi front dostignet protona V. Chast' energii etogo volnovogo fronta budet pogloshena protonom V. Oboznachim etu energiyu kak ε2 . Togda ε2 = ( ε0πrr)/4πRR = ε0/4 rr/RR ; gde r = d/2 radius protona. Posle poglosheniya protonom V energii ε2 , proton V izluchaet volnovoi front s energiei ε0 + ε2 Cherez nekotoroe vremya etot volnovoi front dostignet protona A. Chast' energii etogo volnovogo fronta budet pogloshena protonom A . Oboznachim etu energiyu ε1 = ((ε0 + ε2))/4πRR πr2 = ε0/4 (1+rr/4RR ) rr/RR V etot zhe moment vremeni proton A izluchaet volnovoi front s energiei ε0 + ε1 Cherez nekotoroe vremya etot volnovoi front dostignet protona V. Chast' energii etogo fronta budet pogloshena protonom V. Oboznachim etu energiyu ε22 = ((ε0 + ε1))/4πRR πr2 = ε0/4 ( 1+ rr/4RR + rrrr/16RRRR ) rr/RR V tot zhe moment proton V izluchit volnovoi front s energiei ε0 + ε22 . Cherez nekotoroe vremya etot volnovoi front dostignet protona A . Oboznachim energiyu pogloshennuyu protonom A kak ε11 = ((ε0 + ε22))/4πRR πr2 = ε0/4 ( 1+ rr/4RR + rrrr/16RRRR+rrrrrr/64RRRRRR ) rr/RR V etot zhe moment proton A izluchit volnovoi front s energiei ε0 + ε11 Cherez nekotoroe vremya etot volnovoi front dostignet protona V . Energiya pogloshennaya protonom V budet ravna ε222 = ((ε0 + ε11))/4πRR πr2 Process izlucheniya i poglosheniya budet proishodit' beskonechnoe chislo raz. Pri etom energiya iz kosmosa pogloshaetsya protonami A i V nepreryvno i postoyanno vo vremeni. Dlya energii εnnn... vyrazhenie v skobkah est' geometricheskaya progressiya, summa kotoroi ravna S = 1/(1-rr/4RR) Dlya R >> r summa S ≈ 1 Ochevidno energiya ε0 proporcional'na napryazhennosti 2g =3 γ πm/σ Ili ε0 = 3kπγ m/σ gde k koefficient proporcional'nosti. Naidem vyrazhenie dlya zakona vsemirnogo tyagoteniya. Energiya obmena mezhdu protonami ε = ε0/4 rr/RR proporcional'na gp , gde gp napryazhennost' gravitacionnogo polya vozdeistvuyushego na proton A so storony protona V. Togda ε0 = 2kg i ε = k gp Otsyuda ε/ε0 = gp/2g = rr/4RR Otsyuda gp = 1/(2 ) g rr/RR = 3/4 πγ m/σ rr/RR Ili gp = 3/4 γ m/RR Okonchatel'no sila vzaimodeistviya mezhdu protonami F = m gp = 3/4 γ mm/RR ; gde 3/4 γ est' koefficient gravitacii. V privedennom issledovanii 3/4 γ < γ . Eto ob'yasnyaetsya tem, chto v real'nosti v kosmose sushestvuyut sgustki veshestva v vide zvezd, planet, asteroidov prakticheski bez poter' pereizluchayushih gravitacionnuyu energiyu obratno v kosmos. Po etoi prichine vnutri solnechnoi sistemy plotnost' gravitacionnoi energii neskol'ko vyshe chem v modeli, v kotoroi veshestvo razdrobleno do protonov. Protonnyi gaz ne tol'ko pereizluchaet, no i chastichno pogloshaet gravitacionnuyu energiyu, rashoduya ee na kineticheskuyu energiyu svoego dvizheniya. V modeli protonnogo gaza plotnost' gravitacionnoi energii men'she chem vnutri solnechnoi sistemy, a eto oznachaet chto 3/4 γ < γ Vozmozhno ne uchityvaetsya nakachka gravitacionnoi energiei elektromagnitnym izlucheniem kosmosa. http://astrogalaxy.ru/forum/phpBB2/viewforum.php?f=11 http://www.astronomy.ru/forum/index.php/board,2.0.html http://forum.lebedev.ru/viewforum.php?f=12
- >> Volnovaya model' gravitacii (V. Sh. Yanbikov, 2.11.2016 17:47, 5.8 KBait)