Rambler's Top100Astronet    
  po tekstam   po klyuchevym slovam   v glossarii   po saitam   perevod   po katalogu
 

Na pervuyu stranicu
Fizicheskie osnovy stroeniya i evolyucii zvezd

<< 1.8 Teorema viriala | Oglavlenie | 2.2 Osnovnye parametry politropy >>

2. Analiticheskaya teoriya politropnyh sharov (teoriya Leina-Rittera-Emdena)



Razdely

2.1 Uravnenie Emdena

V etoi glave my budem izuchat' ravnovesnye konfiguracii zvezd, podchinyayushihsya stepennomu (politropnomu) uravneniyu sostoyaniya

$\displaystyle P=K\rho^\gamma=K\rho^{1+{1\over n}},
$

gde $ \gamma$ -- pokazatel', $ n$ -- indeks politropy. Interes k etomu uravneniyu sostoyaniya voznik eshe v proshlom veke, kogda dumali, chto vse zvezdy polnost'yu konvektivny. Pri etom mozhno predpolozhit', chto entropiya postoyanna. Integriruya termodinamicheskie ravenstva

$\displaystyle dE=-Pdv=K\rho^{1+{1\over n}}  {1\over \rho^2}d\rho=K\rho^{-1+{1\over n}}d\rho,
$

poluchaem vyrazhenie dlya vnutrennei energii

$\displaystyle E=nK\rho^{1\over n}=n{P\over \rho}.
$

Otsyuda ental'piya

$\displaystyle H=E+Pv=E+{P\over \rho}=(n+1)\;{P\over \rho}.
$

V sluchae ideal'nogo gaza izvestno, chto ($ c_v$ -- teploemkost', $ {\cal{R}}$ -- gazovaya postoyannaya)

$\displaystyle E={c_v\over \mu}T, \quad P=\rho {{\cal{R}}T\over \mu}$   ili$\displaystyle \quad
{P\over \rho}=
{{\cal{R}}T\over \mu}, \quad E={c_v\over {\cal{R}}}  {P\over \rho}.
$

Dlya odnoatomnogo gaza

$\displaystyle c_v={3\over 2}{\cal{R}}$   i$\displaystyle \quad n={3\over 2}.
$

To zhe mozhno vychislit' i dlya mnogoatomnyh gazov, no etot sluchai neinteresen: seichas my znaem o zvezdah neskol'ko bol'she, chem 100 let nazad.

Vvedem peremennuyu $ \Theta$ takim obrazom, chtoby

$\displaystyle \rho=\lambda \Theta^n, \quad P=K \lambda^{1+{1\over n}}  \Theta^{n+1},
$

   t.e. imeem$\displaystyle  {\rho\over \rho_c}={\lambda \Theta^n\over \rho_c}, \quad
{P\over \rho}=K\lambda^{1\over n}\Theta$   i$\displaystyle \quad H=(n+1)K\lambda^{1\over n}
\Theta.
$

Dlya ideal'nogo gaza s postoyannoi teploemkost'yu velichina $ \Theta$ proporcional'na temperature. Voz'mem uslovie ravnovesiya v vide

$\displaystyle \varphi+H=$const$\displaystyle $

i podeistvuem na nego operatorom $ \Delta$. Laplasian $ \varphi$ est' $ 4\pi  G
 \rho$, t.e. $ \Delta \varphi=4\pi  G  \lambda \Theta^n$, a laplasian $ H$ est' $ (n+1)K\lambda^{1/n}\Delta \Theta $, i uravnenie ravnovesiya zapishetsya v vide

$\displaystyle 4\pi  G  \lambda \Theta^n+(n+1)K\lambda^{1/n}\Delta \Theta=0 .
$

Budem uproshat' poluchennoe sootnoshenie, izmenyaya masshtab, t.e. vvodya peremennuyu $ \xi$ cherez sootnoshenie $ r=\alpha \xi$,

$\displaystyle 4\pi  G  \lambda \Theta^n+{(n+1)K\lambda^{1/n}\over \alpha^2}  \Delta_\xi  
\Theta=0,
$

gde $ \Delta_\xi={1\over \xi^2}  {\partial\over \partial \xi}  \xi^2  
{\partial\over \partial \xi}$.

Vyberem $ \alpha $ tak, chtoby $ 4\pi  G  \lambda=(n+1)K\lambda^{1/n}/\alpha^2$. Togda uravnenie ravnovesiya zapishetsya v vide

$\displaystyle \Delta_\xi  \Theta+\Theta^n=0 ,$   ili$\displaystyle \quad{1\over \xi^2}  
{d\over d \xi}
 \xi^2  {d \Theta\over d \xi}+\Theta^n=0.
$

\begin{wrapfigure}{r}{0.5\textwidth}
\epsfxsize =0.45\textwidth
\hbox to0.5\textwidth{\hss\epsfbox{fig/f12.ai}\hss}
\end{wrapfigure}
Ris. 12.

Takim obrazom, pri dannom $ n$ uravnenie ravnovesiya odno i to zhe dlya zvezd lyuboi massy. Reshaya uravnenie pri granichnyh usloviyah $ \Theta(0)=1, \;\left.{d \Theta
\over d \xi}\right\vert _{\xi=0}=0$ (t.e. polozhiv $ \lambda=\rho_c$), poluchim monotonnoe ubyvanie $ \Theta$ ot edinicy k nulyu (ris. 12). Znachenie $ \xi_1$, gde $ \Theta(\xi_1)
=0$, yavlyaetsya granicei zvezdy. Plotnost' $ \rho $, proporcional'naya $ \Theta^n$, pri $ n>1$ spadaet bolee kruto, chem $ \Theta$. My uzhe pokazyvali v razdele 1.5, chto pri stepennom uravnenii sostoyaniya na krayu zvezdy $ \rho \sim (R-r)^{1/(\gamma-1)}$. No $ \gamma=1+1/n$, t.e. $ \rho \sim (R-r)^n \sim \Theta^n$. Poetomu $ \Theta \sim
(\xi_1-\xi)$ i vblizi $ \xi=\xi_1$ velichina $ \Theta$ prohodit nul' s konechnoi proizvodnoi, hotya $ \Theta^n$ ``steletsya'' (pri $ n>1$), t.e. podhodit k nulyu, kasayas' osi absciss.

Yasno, chto dlya zvezd s razlichnymi $ \rho_c$ i $ K$ krivye s odinakovymi $ n$ podobny. Dostatochno znat' tol'ko odnu funkciyu $ \Theta(\xi)$. Podcherknem vazhnost' granichnogo usloviya $ \left.{d \Theta\over d \xi}\right\vert _{\xi=0}=0$. Obratnoe $ \left(\left.{d
\Theta\over d \xi}\right\vert _{\xi=0} \ne 0\right)$ oznachalo by konechnyi skachok uskoreniya v centre (t.e. osobennost')2.1.

Neskol'ko avtorov v proshlom veke chislenno prointegrirovali uravnenie dlya razlichnyh $ n$. V chastnosti, Emden poluchil tablicy $ \Theta_n(\xi)$ c bol'shoi tochnost'yu. Znachenie etih vychislenii teper' neveliko, tak kak raschet real'nyh zvezd provoditsya s uchetom fizicheskih faktorov, sovershenno ne uchityvaemyh v politropnoi teorii (nestepennoe uravnenie sostoyaniya; istinnaya svyaz' $ P$ i $ \rho $ poluchaetsya iz rassmotreniya vseh processov, vklyuchaya perenos izlucheniya, yadernye reakcii). Odnako dlya kachestvennyh issledovanii reshenie uravnenii Emdena ves'ma polezno. Naprimer, s pomosh'yu politropnoi modeli legko pokazat' nevozmozhnost' sushestvovaniya sverhmassivnyh zvezd. Eto vazhno dlya problemy kvazarov.


<< 2. Politropnye shary | Oglavlenie | 2.2 Osnovnye parametry politropy >>

Publikacii s klyuchevymi slovami: Evolyuciya zvezd - vnutrennee stroenie zvezd - termoyadernye reakcii - fizicheskie processy
Publikacii so slovami: Evolyuciya zvezd - vnutrennee stroenie zvezd - termoyadernye reakcii - fizicheskie processy
Sm. takzhe:
Vse publikacii na tu zhe temu >>

Ocenka: 3.0 [golosov: 120]
 
O reitinge
Versiya dlya pechati Raspechatat'

Astrometriya - Astronomicheskie instrumenty - Astronomicheskoe obrazovanie - Astrofizika - Istoriya astronomii - Kosmonavtika, issledovanie kosmosa - Lyubitel'skaya astronomiya - Planety i Solnechnaya sistema - Solnce


Astronet | Nauchnaya set' | GAISh MGU | Poisk po MGU | O proekte | Avtoram

Kommentarii, voprosy? Pishite: info@astronet.ru ili syuda

Rambler's Top100 Yandeks citirovaniya