Rambler's Top100Astronet    
  po tekstam   po klyuchevym slovam   v glossarii   po saitam   perevod   po katalogu
 

Na pervuyu stranicu
Fizicheskie osnovy stroeniya i evolyucii zvezd

<< 2.1 Uravnenie Emdena | Oglavlenie | 2.3 Chastnye sluchai politropnyh >>

2.2 Osnovnye parametry politropy

Pri dannom $ \xi_1$ radius zvezdy $ R=\alpha \xi_1$,

$\displaystyle \alpha={\left[(n+1)K\rho_c^{{1\over n}-1}/4\pi \,G\right]}^{1/2}.
$

Vvedem bezrazmernuyu velichinu $ \mu_1=\int\limits_0^{\xi_1} \Theta^n \xi^2 d\xi$. Togda massa zvezdy

$\displaystyle M=4\pi \int\limits_0^R \rho \,r^2dr=4\pi \alpha^3 \,\rho_c \mu_1,
$

otsyuda legko poluchit' tochnuyu svyaz' mezhdu central'noi plotnost'yu i massoi zvezdy

$\displaystyle \rho_c=\lambda=(4\pi)^{n\over {3-n}}{\left({M\over \mu_1}\right)}^{2n\over {3-n}}
{\left({G\over {(n+1)K}}\right)}^{3n\over {3-n}}.
$

Dlya davleniya zvezdy v centre imeem

$\displaystyle P_c=p_1GM^{2/3} \,\rho_c^{4/3},$   gde$\displaystyle \;p_1=(4\pi)^{1/3}/{(n+1)\mu_1^{2/3}}.
$

Zametim, chto $ P_c$ (pri dannyh $ M, \;\rho_c$) ne zavisit ot $ K$. Etot rezul'tat estestven, esli vspomnit', chto

$\displaystyle P\sim {GM^2\over R^4}\sim GM^{2/3} \,\rho_c^{4/3}.
$

No raspredelenie davleniya po zvezde zavisit ot $ n$, poetomu vyrazhenie dlya $ P_c$ soderzhit strukturnyi mnozhitel' $ p_1(n)$. Vvedem eshe mnozhitel' $ R_1(n)$ takim obrazom, chtoby

$\displaystyle R=R_1(n){[K^n \,G^{-n} \,M^{1-n}]}^{1/(3-n)}.
$

V ryade sluchaev (naprimer, v zadachah vrasheniya) vazhen moment inercii zvezdy, vyrazhenie dlya kotorogo zapishem v vide

$\displaystyle I=I_1MR^2.
$

V tablice 1 my privodim znacheniya vvedennyh nami strukturnyh velichin dlya naibolee vazhnyh znachenii $ n$. Vyshe (razdely 1.7; 1.8) byli vvedeny vyrazheniya dlya polnoi, gravitacionnoi i teplovoi energii zvezdy. Integriruya eti vyrazheniya dlya politropnyh sharov, mozhno poluchit' sleduyushie sootnosheniya:

$\displaystyle {\cal{E}}=-{{3-n}\over {5-n}} \,{GM^2\over R}, \quad U=-{3\over {5-n}} \,{GM^2
\over R},
$

$\displaystyle Q={n\over {5-n}} \,{GM^2\over R}.
$


Tablica 1.
$ n$ $ \xi_1$ $ \mu_1$ $ \rho_c/\rho_{cp}$ $ p_1$ $ I_1$ $ R_1(n)$
0 2.45 4.90 1.00 0.806 0.400 0.602
0.5 2.75 3.79 1.84 0.638 -- 0.832
1 3.14 3.14 3.29 0.542 0.261 1.253
1.5 3.65 2.71 5.99 0.478 0.205 2.35
2 4.35 2.41 11.4 0.431 0.155 7.53
2.5 5.36 2.19 23.4 0.394 0.112 186
3 6.90 2.02 54.2 0.364 0.075 --
4 14.97 1.80 622 0.315 -- 0.0517
5 $ \infty$ 1.73 $ \infty$ 0.269 0  

Odnako est' bolee izyashnyi sposob vyvoda etih vyrazhenii s ispol'zovaniem soobrazhenii razmernosti i variacionnogo principa.

Zapishem vyrazhenie dlya polnoi energii $ {\cal{E}}$ v vide $ {\cal{E}}=-aGM^2/R$, gde $ a$ zaranee ne izvestno, i podstavim zavisimost' $ R(M)$, togda $ {\cal{E}}\sim GM^{2-{
{1-n}\over {3-n}}} \sim GM^{{5-n}\over {3-n}}$, ili v differencial'noi forme $ d{\cal{E}}={{5-n}\over {3-n}}GM^{{{5-n}\over {3-n}}-1}\,dM$ $ ={{5-n}\over {3-n}}{{\cal{E}}\over M} \,dM$. Zdes' $ d{\cal{E}}$ est' raznost' energii dvuh ravnovesnyh zvezd, massy kotoryh razlichayutsya na $ dM$.

No my mozhem izmenit' $ {\cal{E}}$, dobavlyaya massu $ dM$ na poverhnost' zvezdy (t.e. pri $ P=0$). Togda $ d{\cal{E}}=-{GM\over R} \,dM$, tak kak vnutrennyaya energiya kuska ravna nulyu, i izmenilas' tol'ko gravitacionnaya energiya. Poluchennaya konfiguraciya $ M+dM$ ne yavlyaetsya ravnovesnoi. Tem ne menee soglasno variacionnomu principu s tochnost'yu do $ (dM)^2$ izmenenie energii zvezdy bezrazlichno k tomu, kakim obrazom menyaetsya massa zvezdy. Poetomu $ d{\cal{E}}_1=d{\cal{E}}_2$, otkuda

$\displaystyle {{5-n}\over {3-n}} \,{{\cal{E}}\over M}=-\; {GM\over R}$   i$\displaystyle \quad {\cal{E}}=
-{{3-n}\over {5-n}} \,{GM^2\over R}.
$

S drugoi storony, po teoreme viriala $ {Q\over U}=-\;{n\over 3}$,

$\displaystyle {\cal{E}}=Q+U={{3-n}\over 3}U={{n-3}\over n}Q.
$

Takim obrazom,

$\displaystyle Q={n\over {5-n}} \,{GM^2\over R}, \quad U=-{3\over {5-n}} \,{GM^2\over R}.
$



<< 2.1 Uravnenie Emdena | Oglavlenie | 2.3 Chastnye sluchai politropnyh >>

Publikacii s klyuchevymi slovami: Evolyuciya zvezd - vnutrennee stroenie zvezd - termoyadernye reakcii - fizicheskie processy
Publikacii so slovami: Evolyuciya zvezd - vnutrennee stroenie zvezd - termoyadernye reakcii - fizicheskie processy
Sm. takzhe:
Vse publikacii na tu zhe temu >>

Ocenka: 3.0 [golosov: 120]
 
O reitinge
Versiya dlya pechati Raspechatat'

Astrometriya - Astronomicheskie instrumenty - Astronomicheskoe obrazovanie - Astrofizika - Istoriya astronomii - Kosmonavtika, issledovanie kosmosa - Lyubitel'skaya astronomiya - Planety i Solnechnaya sistema - Solnce


Astronet | Nauchnaya set' | GAISh MGU | Poisk po MGU | O proekte | Avtoram

Kommentarii, voprosy? Pishite: info@astronet.ru ili syuda

Rambler's Top100 Yandeks citirovaniya