Rambler's Top100Astronet    
  po tekstam   po klyuchevym slovam   v glossarii   po saitam   perevod   po katalogu
 

Na pervuyu stranicu
Fizicheskie osnovy stroeniya i evolyucii zvezd

<< 2.4 Teoriya belyh karlikov | Oglavlenie | 3. Perenos izlucheniya v zvezdah >>

2.5 Goryachie zvezdy

Teper' rassmotrim drugoi predel'nyi sluchai, v kotorom glavnuyu rol' igraet davlenie izlucheniya.

Napomnim uravnenie sostoyaniya dlya ideal'nogo gaza

$\displaystyle P={{\cal{R}}T\over \mu}\,\rho,
$

zdes' $ \mu$ -- molekulyarnyi ves veshestva, t.e. velichina, kotoraya pokazyvaet, skol'ko edinic atomnogo vesa prihoditsya na odnu chasticu (otlichaite $ \mu$ ot $ \mu_e$!). Naprimer, $ \mu_H=1/2$, no $ \mu_{eH}=1$, i $ \mu_{He_2^4}=4/3,\;\mu_{eHe}=2$ i t.p. Pri vysokih temperaturah, kogda gaz polnost'yu ionizovan i yavlyaetsya odnoatomnym, teplovaya energiya gramma veshestva ravna

$\displaystyle E={3\over 2}\,{{\cal{R}}T\over \mu}.
$

S drugoi storony, pri vysokih temperaturah v termodinamike zvezdy vse bol'shuyu rol' nachinaet igrat' davlenie izlucheniya. Dlya izlucheniya, nahodyashegosya v termodinamicheskom ravnovesii (plankovskogo izlucheniya), plotnost' energii odnoznachno opredelyaetsya temperaturoi (sm. nizhe, v razdele 3.3)

$\displaystyle \varepsilon_r=aT^4=7,56\cdot 10^{-15}\,T^4\;$erg$\displaystyle /$sm$\displaystyle ^3.
$

Davlenie pri etom

$\displaystyle P_r=\varepsilon_r/3=2,52\cdot 10^{-15}\,T^4\;$erg$\displaystyle /$sm$\displaystyle ^3.
$

V laboratornyh usloviyah izmenyayut ne plotnost' $ \varepsilon_r$, a potok luchistoi energii $ q$ (Pochemu?), kotoryi svyazan s $ \varepsilon_r$ prostoi zavisimost'yu

$\displaystyle q=\varepsilon_r c/4.
$

(Poluchite koefficient 1/4 v etoi formule.) Takim obrazom, $ q=5,67\cdot 10^{-5}\,
T^4=\sigma T^4$ (zakon Stefana-Bol'cmana). Po formule Einshteina plotnost' massy izlucheniya

$\displaystyle \rho_r=\varepsilon_r/c^2\;$g$\displaystyle /$sm$\displaystyle ^3.
$

Imeetsya shirokaya oblast' astrofizicheskih uslovii, kogda davlenie i energiya izlucheniya i veshestva sravnimy, no plotnost' massy izlucheniya mnogo men'she plotnosti massy veshestva ( $ \rho_r\ll\rho_m$). Vypishem teper' vyrazheniya dlya polnogo davleniya veshestva i izlucheniya

$\displaystyle P={{\cal{R}}T\over \mu}\,\rho+{aT^4\over 3}={8,3\cdot 10^7\,T\rho\over \mu}+2,5
\cdot 10^{-15}\,T^4.
$

Rassmotrim model' zvezdy, v kotoroi svyaz' mezhdu plotnost'yu i temperaturoi daetsya formuloi

$\displaystyle T=\tau\rho^{1/3},
$

gde $ \tau$ -- postoyannyi mnozhitel'. Togda davlenie veshestva $ P_m\sim \rho T\sim
\rho^{4/3}$ i davlenie izlucheniya $ P_r\sim T^4\sim \rho^{4/3}$, t.e. v takoi modeli otnoshenie davleniya izlucheniya i veshestva postoyanno po zvezde i

$\displaystyle P={8,3\cdot 10^7\,\tau\over \mu}\,\rho^{4/3}\,(1+3\cdot 10^{-23}\,\mu\tau^3).
$

Otmetim, chto v etom sluchae entropiya $ S$ menyaetsya (Kak? Rastet ili padaet naruzhu?). Vvedem velichinu

$\displaystyle y=\tau\;^3\surd\overline{3\cdot 10^{-23}\,\mu},
$

togda

$\displaystyle P=2,7\cdot 10^{15}\,\mu^{-4/3}y[1+y^3]\rho^{4/3}.
$

Parametr $ y$ imeet prostoi smysl: $ y^3=P_r/P_m$.

Takim obrazom, $ P=K_1\rho^{4/3}$, i my imeem uzhe znakomoe nam uravnenie politropy $ n=3$. My znaem, chto v etom sluchae ravnovesie vozmozhno tol'ko pri odnom znachenii massy. Podstavlyaya $ K_1$ v formulu (2.1), poluchim

$\displaystyle M=19M_\odot\mu^{-2}{[y(1+y^3)]}^{3/2}.
$

Ispol'zuya etu formulu, mozhno ocenit' rol' davleniya izlucheniya dlya zvezdy dannoi massy (sm. tabl. 2, v kotoroi prinyato $ \mu=0,5$).


Tablica 2.2: Rost davleniya v zavisimosti ot massy zvezdy ($ \mu =0.5$)
$ y$ 0.05 0.1 0.7 1 2 10
$ M/M_\odot$ 0.85 2.4 70 215 5800 $ 7.6\cdot10^7$
$ 1-\beta=P_r/(P_r+P_m)$ $ 10^{-4}$ $ 10^{-3}$ 0.25 0.5 0.89 0.999

Iz tablicy 2 vidno, chto zvezda s massoi $ 215\;M_\odot$ yavlyaetsya granichnoi ($ y=1$). Kak pokazal A.Eddington, dlya zvezd s massoi poryadka $ 1\;M_\odot$ rol' davleniya izlucheniya prenebrezhima, a dlya zvezd s $ M\sim 100\;M_\odot$ davlenie izlucheniya yavlyaetsya dominiruyushim.

Primenim teoremu viriala k postroennoi vyshe modeli. S uchetom izlucheniya teplovaya energiya zvezdy

$\displaystyle Q=\int \left({3\over 2}\,{{\cal{R}}T\rho\over \mu}+3P_r\right)dV.
$

Po teoreme viriala gravitacionnaya energiya zvezdy

$\displaystyle U=-3\int PdV=-\int \left(3{{\cal{R}}T\rho\over \mu}+3P_r\right)dV.
$

Polnaya energiya zvezdy $ {\cal{E}}=
Q+U$

$\displaystyle {\cal{E}}=-\int {3\over 2}\,{{\cal{R}}T\over \mu}\,\rho\,dV,
$

t.e. zvezda gravitacionno svyazana, no eta svyaz' ravna tol'ko toi dole energii, kotoraya opredelyaetsya veshestvom

$\displaystyle {\cal{E}}={1\over 2}\;\beta \;U,
$

poetomu pri $ \beta\to 0\quad{\cal{E}}$ -- malo. V etoi modeli my iskusstvenno vveli politropu $ n=3$, no entropiya ne postoyanna po zvezde (esli $ S=$const po zvezde, to pri $ n=3,\;{\cal{E}}=0$). Podcherknem raznicu mezhdu pokazatelem adiabaty $ \gamma$ i pokazatelem politropy $ 1+1/n$. Voz'mem odnoatomnyi nerelyativistskii gaz ( $ \gamma=5/3$), dlya kotorogo $ P\sim e^S\rho^{5/3}$. Pust' raspredelenie entropii po zvezde opredelyaetsya zavisimost'yu $ e^S\sim \rho^\alpha$, togda davlenie i plotnost' svyazany sootnosheniem

$\displaystyle P\sim \rho^{{5\over 3}+\alpha}.
$

Struktura zvezdy budet opredelyatsya pokazatelem politropy (zdes' $ 5/3+\alpha=1+1/n$), a ustoichivost' zavisit ot pokazatelya adiabaty, t.e. ot uprugosti veshestva (v nashei modeli $ \gamma=5/3$).

Za schet raspredeleniya entropii my mozhem poluchit' ustoichivuyu zvezdu, naprimer, s $ n=4$. V rassmatrivaemoi vyshe modeli $ n=3$, no polnaya energiya etoi zvezdy ne ravnyalas' nulyu, tak kak model' neizentropichna. Ustoichivost' zvezdy opredelyaetsya ne raspredeleniem veshestva, a tem, kak ono vedet sebya pri szhatii (t.e. ego uprugost'yu!).


<< 2.4 Teoriya belyh karlikov | Oglavlenie | 3. Perenos izlucheniya v zvezdah >>

Publikacii s klyuchevymi slovami: Evolyuciya zvezd - vnutrennee stroenie zvezd - termoyadernye reakcii - fizicheskie processy
Publikacii so slovami: Evolyuciya zvezd - vnutrennee stroenie zvezd - termoyadernye reakcii - fizicheskie processy
Sm. takzhe:
Vse publikacii na tu zhe temu >>

Ocenka: 3.0 [golosov: 120]
 
O reitinge
Versiya dlya pechati Raspechatat'

Astrometriya - Astronomicheskie instrumenty - Astronomicheskoe obrazovanie - Astrofizika - Istoriya astronomii - Kosmonavtika, issledovanie kosmosa - Lyubitel'skaya astronomiya - Planety i Solnechnaya sistema - Solnce


Astronet | Nauchnaya set' | GAISh MGU | Poisk po MGU | O proekte | Avtoram

Kommentarii, voprosy? Pishite: info@astronet.ru ili syuda

Rambler's Top100 Yandeks citirovaniya