Rambler's Top100Astronet    
  po tekstam   po klyuchevym slovam   v glossarii   po saitam   perevod   po katalogu
 

Na pervuyu stranicu
Fizicheskie osnovy stroeniya i evolyucii zvezd

<< 8.4 Gravitacionnoe krasnoe smeshenie. | Oglavlenie | 9.2 Dvizhenie chastic v ... >>

9. Sil'nye gravitacionnye polya i stroenie relyativistskih zvezd



Razdely

9.1 Reshenie Shvarcshil'da

Rassmotrim sfericheski-simmetrichnoe i staticheskoe reshenie uravnenii Einshteina. Vvedem sfericheskie koordinaty, zapisav vyrazhenie dlya intervala v vide

$\displaystyle ds^2=g_{00}\,dt^2+g_{11}dr^2+g_{22}(d\theta^2+\sin^2\theta\,d\varphi^2).
$

Vid uglovoi chasti metriki $ (d\theta^2+\sin^2\theta\,d\varphi^2)$ sleduet iz trebovaniya sfericheskoi simmetrii. Iz trebovaniya statichnosti nahodim, chto $ g_{00}\,g_{11}$ i $ g_{22}$ dolzhny byt' funkciyami tol'ko $ r$. Krome togo, dolzhno byt' $ g_{01}=0$, inache ne budet obratimosti vo vremeni. Otsutstvuyut takzhe chleny tipa $ g_{r\varphi}$ iz-za sfericheskoi simmetrii.

Opredelim radial'nuyu koordinatu $ r$ tak, chtoby $ g_{22}=r^2$. Pri takom opredelenii radiusa ploshad' sfery ravna $ 4\pi r^2$, a dlina okruzhnosti s centrom v nachale koordinat ravna $ 2\pi r$. Odnako eto ne znachit, chto tochka, imeyushaya koordinatu $ r$, udalena ot centra na rasstoyanie $ r$, tak kak geometriya teper' neevklidova.

Vvedem funkcii $ \nu(r)$ i $ \lambda(r)$ tak, chto

$\displaystyle g_{00}=-e^{\nu(r)},\,g_{11}=e^{\lambda(r)},
$

t. e. metrika priobretaet vid

$\displaystyle ds^2=-e^{\nu(r)}dt^2+e^{\lambda(r)}dr^2+r^2(d\theta^2+\sin^2\theta\,d\varphi^2).
$

Iz uravnenii Einshteina

$\displaystyle R^k_i-{1\over 2}\delta^k_i R={8\pi G\over {c^4}}T^k_i={\varkappa\over{c^2}}T^k_i
$

posle dovol'no dolgih vychislenii poluchim

$\displaystyle e^{-\lambda}\left({\nu'\over r}+{1\over{r^2}}\right)-{1\over{r^2}}={\varkappa\over{c^2}}T^1_1,$ (9.1)

$\displaystyle -{1\over 2}e^{-\lambda}\left(\nu''+{{\nu'}^2\over 2}+{\nu'-\lambd...
...'\lambda'\over 2}\right)={\varkappa\over{c^2}}T^2_2={\varkappa\over{c^2}}T^3_3,$ (9.2)

$\displaystyle e^{-\lambda}\left({1\over{r^2}}-{\lambda'\over r}\right)-{1\over{r^2}}={\varkappa\over{c^2}}T^0_0.$ (9.3)

Vse ostal'nye uravneniya obrashayutsya v tozhdestva 0=0. Ne diagonal'nye komponenty tenzora energii-impul'sa (tipa $ T^{\varphi}_r$ i t. p.) obrashayutsya v nul' vsledstvie sfericheskoi simmetrii (eto oznachaet, chto net skalyvayushih napryazhenii). Otsutstvuet takzhe komponenta $ T_0^1$, tak kak etot chlen sootvetstvuet potoku energii po radiusu, a my rassmatrivaem staticheskie resheniya.

My ispol'zovali smeshannye komponenty tenzora $ T^k_i$. V vyrazhenie $ T_{11}$ i $ T^{11}$ vhodyat metricheskie koefficienty. Pust' u nas est' metrika

$\displaystyle dl^2=a^2dx^2+b^2dy^2+c^2dz^2,$ (9.4)

kotoraya ekvivalentna metrike

$\displaystyle dl^2={dx'}^2+{dy'}^2+{dz'}^2,$ (9.5)

gde $ a\,dx=x'$, $ b\,dy=dy'$, $ c\,dz=dz'$. Okazyvaetsya, chto vyrazheniya dlya $ T_{11}$, naprimer, raznye v (9.4) i (9.5). V smeshannye komponenty vida $ T^1_1$ koefficienty $ a,\,b,\,c$ ne vhodyat, poetomu oni odinakovy v ishodnoi sisteme i lokal'no-lorencevoi (esli ishodnaya sistema uzhe diagonal'na).

Nachnem s togo, chto budem iskat' reshenie uravnenii (9.1), (9.2), (9.3) v pustote vokrug zvezdy (t. e. polozhim $ T^k_i=0$). Vvedem $ f=e^{-\lambda}$. Togda

$\displaystyle -\lambda'\,e^{-\lambda}=f'
$

$\displaystyle \lambda'=-f'/f.
$

Teper' dlya uravneniya (9.3) imeem

$\displaystyle f\left(\frac{1}{r^2}-{f'\over{fr}}\right)-{1\over{r^2}}=0,
$

$ f=1-a/r,\,a$ -- const, t. e. $ g_{11}=e^{\lambda}=f^{-1}=1/(1-a/r)$. Vychitaya iz uravneniya (9.1) uravnenie (9.3), poluchim

$\displaystyle \nu'+\lambda'=0\,\Rightarrow\,\nu+\lambda=$const$\displaystyle .
$

Vybor const prosto opredelyaet masshtab vremeni. Poetomu zadadimsya usloviem, chto vdali ot tela, gde $ \lambda=0$, takzhe i $ \nu=0$, t. e. peremennaya $ t$ est' vremya izmeneniya dalekim pokoyashimsya nablyudatelem. Togda poluchim

$\displaystyle \nu+\lambda=0
$

Otsyuda

$\displaystyle e^{\nu}=g_{00}=1-a/r.
$

My poluchili izvestnoe reshenie Shvarcshil'da dlya pustogo prostranstva vokrug sfericheskogo simmetrichnogo tela:

$\displaystyle ds^2=-c^2\left(1-{a\over r}\right)dt^2+{dr^2\over{1-{a\over r}}}+r^2(d\theta^2+\sin^2\theta\,d\varphi^2).$ (9.6)

Pri $ r\longrightarrow\infty$ eta metrika perehodit v metriku Minkovskogo.

Iz vyrazheniya (6) vidno, chto pri $ r=a$ koefficient pri $ dt^2$ obrashaetsya v nul', a pri $ dr^2$ -- v beskonechnost'.

Nablyudatel' na nekotorom radiuse $ r$ pol'zuetsya lokal'no-lorencevoi sistemoi otscheta:

$\displaystyle ds^2=-c^2d\tau^2+dl^2.
$

Dlya pokoyashegosya nablyudatelya v obeih sistemah $ dr,\,d\varphi,d\theta=0$ i $ dl=0$. Poskol'ku $ ds^2$ -- invariant, poluchim

$\displaystyle d\tau^2=\left(1-\frac{a}{r}\right)dt^2.
$

Vdali, pri $ r\longrightarrow\infty$

$\displaystyle d\tau=\left(1-{a\over{2r}}\right)dt.
$

Tak kak my uzhe vyyasnili svyaz' potenciala s zamedleniem vremeni (razdel 8.4), my vidim, chto

$\displaystyle -{a\over{2r}}={\varphi\over{c^2}},
$

gde $ \varphi$ -- n'yutonovskii potencial (my ubedimsya v etom eshe raz nizhe, rassmatrivaya dvizhenie chastic), no

$\displaystyle \varphi=-{GM\over r},\,$t. e.$\displaystyle \,a={2GM\over{c^2}}=r_g.
$

Velichinu $ r_g=a$ nazyvayut gravitacionnym radiusom (ili radiusom Shvarcshil'da). Dlya zvezdy solnechnoi massy $ M=M_\odot=2\cdot10^{33}$ g; $ r_g=3\cdot10^5$ sm=3 km (polezno zapomnit'!). Dlya Solnca metriku Shvarcshil'da mozhno primenyat' do poverhnosti $ r_s=7\cdot10^{10}$ sm, t. e. $ r_g/r$ vsyudu malo. Dlya neitronnyh zvezd $ r_g/r$ dostigaet $ 0,1\div 0,2$. Dlya chernoi (nevrashayusheisya!) dyry metrika Shvarcshil'da primenima ko vsei nablyudaemoi oblasti prostranstva, t. e. vplot' do $ r=r_g$. Pochemu oblast' $ r<r_g$ ne nablyudaema (izdali) budet ob'yasneno pozdnee.



<< 8.4 Gravitacionnoe krasnoe smeshenie. | Oglavlenie | 9.2 Dvizhenie chastic v ... >>

Publikacii s klyuchevymi slovami: Evolyuciya zvezd - vnutrennee stroenie zvezd - termoyadernye reakcii - fizicheskie processy
Publikacii so slovami: Evolyuciya zvezd - vnutrennee stroenie zvezd - termoyadernye reakcii - fizicheskie processy
Sm. takzhe:
Vse publikacii na tu zhe temu >>

Ocenka: 3.0 [golosov: 119]
 
O reitinge
Versiya dlya pechati Raspechatat'

Astrometriya - Astronomicheskie instrumenty - Astronomicheskoe obrazovanie - Astrofizika - Istoriya astronomii - Kosmonavtika, issledovanie kosmosa - Lyubitel'skaya astronomiya - Planety i Solnechnaya sistema - Solnce


Astronet | Nauchnaya set' | GAISh MGU | Poisk po MGU | O proekte | Avtoram

Kommentarii, voprosy? Pishite: info@astronet.ru ili syuda

Rambler's Top100 Yandeks citirovaniya