- 3.3.1 Vozmushennoe fridmanovskoe reshenie i lineinye priblizheniya
- 3.3.2 Integral'nye velichiny i ih svyazi
3.3 Zakony sohraneniya i integral'nye velichiny dlya vozmushennoi fridmanovskoi modeli
Kvazi-lokal'nye, ili global'no sohranyayushiesya
velichiny ves'ma interesny v kosmologii, i
obychno raschityvayutsya vnutri sfery na secheniyah postoyannogo vremeni
.
Chtoby ih poluchit' obychno ispol'zuetsya differencial'nyi
zakon sohraneniya tipa (2.24) v lekcii 2:
,
kotoryi zdes' (v lineinom
priblizhenii po vozmusheniyam) my ispol'zuem,
tochnee, ego nulevuyu komponentu:
3.3.1 Vozmushennoe fridmanovskoe reshenie i lineinye priblizheniya
Oboznachim vozmushennuyu metriku (3.1) kak eto bolee prinyato
.
Takim obrazom imeem
V modeli, razvitoi v lekcii 2 ispol'zuyutsya vozmusheniya
Opredelim 3-tenzory:
Togda dlya konformnyh killingovyh vektorov, udovletvoryayushih (3.8),
raschet po formule (24) lekcii 2:
s
i
,
(gde
),
i s ispol'zovaniem oboznacheniya (3.20) daet:
Raschet po formule (26) lekcii 2:
gde
i s ispol'zovaniem oboznachenii (3.19), daet:
3.3.2 Integral'nye velichiny i ih svyazi
Teper' my imeem vse neobhodimoe, chtoby prointegrirovat'
uravnenie (3.16) po sfericheskomu ob'emu V s granicei S
v fiksirovannoe vremya
. Opredelim
Sem' iz opredelennyh vyshe konformnyh killingovyh vektorov
my ostavlyaem bez izmeneniya, ih komponenty opredelyayutsya kak
Ostavshiesya 4 kombinacii ne imeyut vremennyh komponent i predstavlyayut konformnye killingovy vektory na secheniyah:
Kak vidno, kombinacii podobrany tak, chto vse komponenty vseh vektorov ne zavisyat ot vremeni.
Podstavlyaya v (3.21) i (3.22)
vektory s komponentami (3.24), (3.25) i
(3.26), poluchim integral'nye sootnosheniya (3.23),
sootvetstvuyushie
kazhdoi gruppe vektorov (3.24) - (3.26). V kachestve
elementov integrirovaniya sleduet schitat'
i
,
ispol'zuetsya takzhe obychnoe opredelenie postoyannoi Habbla:
.
Takim obrazom dlya vektorov (3.24) imeem
Sootvetstvenno dlya (3.25):
i dlya (3.26):
Integral'nye velichiny dlya nastoyashih konformnyh killingovyh vektorov fridmanovskoi geometrii legko vosstanavlivayutsya iz (3.28) i (3.29) s pomosh'yu obratnyh lineinyh kombinacii s vremenizavisimymi koefficientami.
<< 3.2 Konformnye vektory Killinga dlya ... | Oglavlenie | 3.4 Novye integral'nye sootnosheniya >>
|
Publikacii s klyuchevymi slovami:
zakony sohraneniya - Obshaya teoriya otnositel'nosti - gravitaciya
Publikacii so slovami: zakony sohraneniya - Obshaya teoriya otnositel'nosti - gravitaciya | |
Sm. takzhe:
Vse publikacii na tu zhe temu >> | |
![$\displaystyle aH\oint_S{\tilde h}_0^l dS_l =
\int_V [(a\kappa\delta T^0_0+2H{\c...
...over
a}{\tilde h}^m_m]dV =-{\textstyle{\frac{1}{2}}}\oint_S
\nabla_kq^{kl}dS_l,$](https://images.astronet.ru/pubd/2001/09/12/0001170672/img373.gif)
![$\displaystyle \int_V a\kappa\delta T^0_a r'dV
=\oint_S
({\textstyle{\frac{1}{2}}} Q^l{_k}s^k_a- k{\tilde h}_{0k}x^{[k}s_a^{l]})dS_l,$](https://images.astronet.ru/pubd/2001/09/12/0001170672/img375.gif)
![$\displaystyle \int_V a\kappa\delta T^0_k\epsilon_{kal}x^ldV
=\oint_S
({\textsty...
...k}x^{[k}r_a^{l]}+
{\textstyle{\frac{1}{2}}} {\tilde h}_{0k}\epsilon_{kal})dS_l.$](https://images.astronet.ru/pubd/2001/09/12/0001170672/img377.gif)




![$\displaystyle {\textstyle{\frac{1}{2}}} aH\oint_S {\tilde h}_0^lr^2 dS_l =
\int...
...le{\frac{1}{2}}} a\kappa \delta T^0_0+H{\cal Q})r^2-{1\over
a}{\tilde h}^m_m]dV$](https://images.astronet.ru/pubd/2001/09/12/0001170672/img385.gif)





![$\displaystyle \oint_S {\tilde h}_0^l x^a dS_l =
\int_V [a\kappa \delta T^0_k(\delta^{ak}{\textstyle{\frac{1}{2}}} r^2-x^ax^k)-{2\over
a}{\cal Q}x^a]dV$](https://images.astronet.ru/pubd/2001/09/12/0001170672/img394.gif)
![$\displaystyle \oint_S [{\textstyle{\frac{1}{2}}} kQ^l_k(\delta^{ak}{\textstyle{...
...}{2}}}
r^2-x^ax^k)+{\tilde h}^l_0 x^a +{\tilde h}_{0k}x^{[k}\delta^{l]}_a]dS_l.$](https://images.astronet.ru/pubd/2001/09/12/0001170672/img395.gif)