Rambler's Top100Astronet    
  po tekstam   po klyuchevym slovam   v glossarii   po saitam   perevod   po katalogu
 

Na pervuyu stranicu << 3.2 Konformnye vektory Killinga dlya ... | Oglavlenie | 3.4 Novye integral'nye sootnosheniya >>

Razdely


3.3 Zakony sohraneniya i integral'nye velichiny dlya vozmushennoi fridmanovskoi modeli

Kvazi-lokal'nye, ili global'no sohranyayushiesya velichiny ves'ma interesny v kosmologii, i obychno raschityvayutsya vnutri sfery na secheniyah postoyannogo vremeni $\eta $. Chtoby ih poluchit' obychno ispol'zuetsya differencial'nyi zakon sohraneniya tipa (2.24) v lekcii 2: $\hat {\cal I}^\mu=\partial_\nu\hat{\cal I}^{\mu\nu}$, kotoryi zdes' (v lineinom priblizhenii po vozmusheniyam) my ispol'zuem, tochnee, ego nulevuyu komponentu:

\begin{displaymath}
\hat {\cal I}^0=\partial_l\hat{\cal I}^{0l}.
\end{displaymath} (3.16)

3.3.1 Vozmushennoe fridmanovskoe reshenie i lineinye priblizheniya

Oboznachim vozmushennuyu metriku (3.1) kak eto bolee prinyato $g_{\mu\nu}=a^2(e_{\mu\nu}+{\tilde h}_{\mu\nu})$. Takim obrazom imeem

\begin{displaymath}
ds^2=
a^2(e_{\mu\nu}+{\tilde h}_{\mu\nu})dx^\mu dx^\nu.
\end{displaymath} (3.17)

Krome togo, my ispol'zuem 3-mernye komponenty: ${\tilde h}_{00}, {\tilde h}_{0l}, {\tilde h}_{kl}$, indeksy kotoryh podnimayutsya i opuskayutsya s pomosh'yu fkl:
\begin{displaymath}
{\tilde h}^m_l=f^{mk}{\tilde h}_{kl},   {\tilde h}^{mn}=f^{mk}f^{nl}{\tilde h}_{kl},   
{\tilde h}^m_0=f^{ml}{\tilde h}_{0l}.
\end{displaymath} (3.18)

V modeli, razvitoi v lekcii 2 ispol'zuyutsya vozmusheniya $\hat l^{\mu\nu}
= \hat g^{\mu\nu} -\bar {\hat g^{\mu\nu}}$. Kak bylo otmecheno, preimushestvo etogo v tom, chto model', v principe, mozhet byt' legko proschitana do lyubogo poryadka po vozmusheniyam, poskol'ku v terminah $\hat l^{\mu\nu}$ my predstavlyaem tochnye uravneniya i tochnyi, hotya i v lineinoi forme superpotencial. Zdes' my ogranichivaemsya lish' lineinymi priblizheniyami i ispol'zuem bolee populyarnuyu formu vozmushenii ${\tilde h}_{\mu\nu}$. Poetomu zdes' formuly lekcii 2 my pereschityvaem v terminah ${\tilde h}_{\mu\nu}$ s pomosh'yu spravedlivogo v lineinom priblizhenii sootnosheniya
   
  $\displaystyle \hat l^{\mu\nu}=a^2\sqrt{-\bar g}(-\bar g^{\mu\rho}\bar g^{\nu\si...
...}+{{\textstyle{\frac{1}{2}}}}e^{\mu\nu}e^{\rho\sigma})
{\tilde h}_{\rho\sigma}.$  

Opredelim 3-tenzory:

\begin{displaymath}
q^m_l = {\tilde h}^m_l-\delta^m_l{\tilde h}^n_n,   
Q^m_l =...
..._{0n})\delta^m_l+\nabla^m
{\tilde h}_{0l}- \partial_0 {q^m_l}.
\end{displaymath} (3.19)

Krome togo, simvolom $\cal Q$ oboznachim vozmushennyi sled vneshnei krivizny giperpoverhnosti $\eta=const$. Esli $n^\mu$ yavlyaetsya edinichnym vektorom normali k etoi giperpoverhnosti, to
\begin{displaymath}
{\cal Q}\equiv-D_\mu n^\mu-(-\overline{D_\mu n^\mu}) =
{\tex...
...}{2}}}}\partial_0 {{\tilde h}}^{n}_n-
\nabla_n {\tilde h}_0^n.
\end{displaymath} (3.20)

Togda dlya konformnyh killingovyh vektorov, udovletvoryayushih (3.8), raschet po formule (24) lekcii 2: $\hat {\cal I}^{\mu} = \hat {\cal T}^\mu_\nu\xi^\nu + \hat {\cal Z}^\mu$ s


$\hat {\cal T}^{\mu\nu} = (\hat T^{(\mu}_\rho\overline g^{\nu)\rho} -\overline {...
...rline g^{\mu\nu} + {1\over \kappa} {\hat l}^{\lambda[\mu} \bar
R^{\nu]}_\lambda$


i


$2\kappa \hat
{\cal Z}^\mu = 2\left(\bar z^{\rho\sigma}\overline D_\rho \hat l^...
...l^{\mu\nu}\overline
D_\nu \bar z -
\bar z\overline D_\nu \hat l^{\mu\nu}\right)$,


(gde $\bar z_{\rho\sigma} = \overline D_{(\rho} \xi_{\sigma)}$), i s ispol'zovaniem oboznacheniya (3.20) daet:

\begin{displaymath}
\kappa\hat{\cal I}^0 =
\kappa a^4\sqrt{f}\delta T^0_\mu \xi^...
...n_n+\nabla_n(\textstyle{1\over 4}\bar z{\tilde h}^n_0)\right],
\end{displaymath} (3.21)

gde $\textstyle{1\over 4}\bar z=\dot
a \xi^0+{\textstyle{1\over 3}}\nabla_k\xi^k$, $\bar y=
\nabla^2 {\xi^0}+3k \xi^0$ i $\nabla^2=f^{kl}\nabla_k\nabla_l$.

Raschet po formule (26) lekcii 2:

   
  $\displaystyle \hat
{\cal I}^{\mu\nu} ={1 \over \kappa} \hat l^{\rho[\mu}\overline D_\rho\xi^{\nu]}
+ \hat {\cal
P}^{\mu\nu}{_\lambda} \xi^\lambda,$  

gde
   
  $\displaystyle \hat {\cal P}^{\mu\nu\rho} =
{1 \over 2\kappa} \overline D_\sigma...
...\bar g^{\sigma\mu} \hat
l^{\nu\rho}+\bar g^{\sigma\nu} \hat
l^{\mu\rho}\right),$  

i s ispol'zovaniem oboznachenii (3.19), daet:
\begin{displaymath}
\kappa\hat{\cal I}^{0l}= {\textstyle{1 \over 2}} a^2 \sqrt{f...
...{\xi^0}+Q^l_k\xi^k+
{\tilde h}_{0k}\nabla^{[k}\xi^{l]}\right].
\end{displaymath} (3.22)

3.3.2 Integral'nye velichiny i ih svyazi

Teper' my imeem vse neobhodimoe, chtoby prointegrirovat' uravnenie (3.16) po sfericheskomu ob'emu V s granicei S v fiksirovannoe vremya $\eta $. Opredelim

\begin{displaymath}
F({\bf\xi}) \equiv \int_V \hat {\cal I}^0 d^3x =
\oint_S \hat {\cal I}^{0l}{\textstyle{\frac{1}{2}}}\epsilon_{lmn}dx^mdx^n.
\end{displaymath} (3.23)

Esli etot integral (proshe analizirovat' poverhnostnyi integral, kotoryi zavisit tol'ko ot vozmushenii metriki) ne zavisit ot $\eta $, to F yavlyaetsya integralom dvizheniya. Fakticheski my imeem 15 velichin F, po odnomu na kazhdyi konformnyi vektor Killinga ${\bf\xi}_A (A=1,2,...,15)$. Mozhno sostavit' lineinye kombinacii iz F s vremenizavisimymi koefficientami, skazhem $c^A(\eta)F(\xi_A)$. Poskol'ku vyrazheniya i (3.21), i (3.22) lineino zavisyat ot $\xi^\mu$ i tol'ko ih prostranstvennyh proizvodnyh, to $c^AF(\xi_A)=F(c^A\xi_A)$. Voobshe govorya, $c^A\xi_A$ c $c^A = c^A(\eta)$ uzhe ne yavlyayutsya konformnymi vektorami Killinga, no kak my seichas uvidim nekotorye takie kombinacii okazyvayutsya kraine prostymi i imeyut fizicheskuyu interpretaciyu v podhodyashei kallibrovke. Davaite predstavim eti udobnye kombinacii.

Sem' iz opredelennyh vyshe konformnyh killingovyh vektorov my ostavlyaem bez izmeneniya, ih komponenty opredelyayutsya kak

\begin{displaymath}
{\bf t} =(1,0),    {\bf s}_a =(0, \delta^k_a r'),    
{\bf r}_a = (0, \epsilon_{kal}x^l),
\end{displaymath} (3.24)

gde $r=\sin \chi, \chi$ ili $\sinh \chi $ v zavisimosti ot k=1,  0 ili -1; i r' -- proizvodnaya po $\chi$. Sleduyushie 8 lineinyh kombinacii, oboznachennye vektorami s krestami, sostavleny s pomosh'yu vremenizavisimyh koefficientov. V etih formulah ispol'zuyutsya oboznacheniya $\alpha = \sin \eta$ dlya k = 1 (ili $\sinh \eta$ dlya k= -1); gde $\alpha'$ est' proizvodnaya $\alpha$ po $\eta $. Sleduyushie 4 vektora ne imeyut prostranstvennyh komponent:


$\displaystyle {\bf l}^\dagger_a$ = $\displaystyle \left.\left( \alpha'{\bf l}_a- \alpha {\bf b}_a\right)\right\vert...
...1}
= \left.\left({\bf l}_a - \eta {\bf s}_a\right)\right\vert _{k=0}= (x^a, 0),$  
$\displaystyle \left.{\bf a}^\dagger\right\vert _{k=\pm 1}$ = $\displaystyle \left.\left( \alpha'{\bf a}+ k\alpha{\bf d}\right)\right\vert _{k = \pm 1}=
(r',0),$  
$\displaystyle \left.{\bf a}^\dagger\right\vert _{k=0}$ = $\displaystyle \left.\left({\textstyle{\frac{1}{2}}} {\bf a}-
\eta{\bf d}+{\text...
...{2}}} \eta^2{\bf t}\right)\right\vert _{k=0}=({\textstyle{\frac{1}{2}}} r^2,0).$ (3.25)

Ostavshiesya 4 kombinacii ne imeyut vremennyh komponent i predstavlyayut konformnye killingovy vektory na secheniyah: $\eta={\rm const}$:
$\displaystyle {\bf d}^\dagger$ = $\displaystyle \left.\left(\alpha'{\bf d} -
\alpha{\bf a}\right)\right\vert _{k=\pm 1}=
\left.\left({\bf d}-\eta{\bf t}\right)\right\vert _{k=0}=(0,x^k r'),$  
$\displaystyle \left.{\bf b}^\dagger_{a}\right\vert _{k=\pm 1}$ = $\displaystyle \left.\left( \alpha' {\bf b}_a+ k\alpha{\bf l}_a\right)\right\vert _{k = \pm1}=
(0, f^{ak}),$  
$\displaystyle \left.{\bf b}^\dagger_{a}\right\vert _{k=0}$ = $\displaystyle \left.\left(-{\textstyle{\frac{1}{2}}}{\bf b}_a+\eta{\bf l}_a-
{\...
...ight)\right\vert _{k=0}
=(0, \delta^{ak} {\textstyle{\frac{1}{2}}} r^2-x^ax^k).$ (3.26)

Kak vidno, kombinacii podobrany tak, chto vse komponenty vseh vektorov ne zavisyat ot vremeni.

Podstavlyaya v (3.21) i (3.22) vektory s komponentami (3.24), (3.25) i (3.26), poluchim integral'nye sootnosheniya (3.23), sootvetstvuyushie kazhdoi gruppe vektorov (3.24) - (3.26). V kachestve elementov integrirovaniya sleduet schitat' $dV=a^3\sqrt{f}d^3x$ i $dS_l= a^2\sqrt{f}{\textstyle{\frac{1}{2}}} \epsilon_{lmn}dx^m dx^n$, ispol'zuetsya takzhe obychnoe opredelenie postoyannoi Habbla: $H=\dot a/a$. Takim obrazom dlya vektorov (3.24) imeem

$\displaystyle \kappa F({\bf t})$ - $\displaystyle aH\oint_S{\tilde h}_0^l dS_l =
\int_V [(a\kappa\delta T^0_0+2H{\c...
...over
a}{\tilde h}^m_m]dV =-{\textstyle{\frac{1}{2}}}\oint_S
\nabla_kq^{kl}dS_l,$  
$\displaystyle \kappa F({\bf s}_a)$ = $\displaystyle \int_V a\kappa\delta T^0_a r'dV
=\oint_S
({\textstyle{\frac{1}{2}}} Q^l{_k}s^k_a- k{\tilde h}_{0k}x^{[k}s_a^{l]})dS_l,$  
$\displaystyle \kappa F({\bf r}_a)$ = $\displaystyle \int_V a\kappa\delta T^0_k\epsilon_{kal}x^ldV
=\oint_S
({\textsty...
...k}x^{[k}r_a^{l]}+
{\textstyle{\frac{1}{2}}} {\tilde h}_{0k}\epsilon_{kal})dS_l.$ (3.27)

Sootvetstvenno dlya (3.25):
$\displaystyle \kappa F({\bf l}^\dagger_a)$ - $\displaystyle aH \oint_S {\tilde h}_0^l x^a dS_l =
\int_V (a\kappa\delta
T^0_0+2H{\cal Q})x^adV$  
  = $\displaystyle - {\textstyle{\frac{1}{2}}}\oint_S
(x^a\nabla_k q^{kl}-q^{al})dS_l,$  
$\displaystyle \left.\kappa F({\bf a}^\dagger)\right\vert _{k=\pm 1}$ - $\displaystyle aHr'\oint_S{\tilde h}_0^l dS_l
= \int_V (a\kappa \delta T^0_0+2H {\cal Q})r'dV$  
  = $\displaystyle - {\textstyle{\frac{1}{2}}} \oint_S \left( \nabla_k q^{kl} + k q^l_kx^k\right) r'dS_l,$  
$\displaystyle \left.\kappa F({\bf a}^\dagger)\right\vert _{k=0}$ - $\displaystyle {\textstyle{\frac{1}{2}}} aH\oint_S {\tilde h}_0^lr^2 dS_l =
\int...
...le{\frac{1}{2}}} a\kappa \delta T^0_0+H{\cal Q})r^2-{1\over
a}{\tilde h}^m_m]dV$  
  = $\displaystyle -{\textstyle{\frac{1}{2}}} \oint_S \left(
{\textstyle{\frac{1}{2}}} \nabla_k q^{kl} r^2 - q^l_k x^k\right)dS_l$ (3.28)

i dlya (3.26):
$\displaystyle \kappa F({\bf d}^\dagger)$ - $\displaystyle r'\oint_S{\tilde h}_0^l dS_l = \int_V
(a\kappa \delta T^0_k x^k+{2\over a}{\cal Q})
r'dV$  
  = $\displaystyle \oint_S ({\textstyle{\frac{1}{2}}} Q^l_k x^k-{\tilde h}^l_0)r'dS_l,$  
$\displaystyle \left.\kappa F({\bf b}^\dagger_a)\right\vert _{k=\pm 1}$ + $\displaystyle k\oint_S {\tilde h}_0^l x^a dS_l =
\int_V (a\kappa \delta T^0_kf^{ak}-{2k\over a}{\cal Q}x^a)dV$  
  = $\displaystyle \oint_S ({\textstyle{\frac{1}{2}}}
Q^{al}+k{\tilde h}^l_0 x^a)dS_l,$  
$\displaystyle \left.\kappa F({\bf b}^\dagger_a)\right\vert _{k=0}$ + $\displaystyle \oint_S {\tilde h}_0^l x^a dS_l =
\int_V [a\kappa \delta T^0_k(\delta^{ak}{\textstyle{\frac{1}{2}}} r^2-x^ax^k)-{2\over
a}{\cal Q}x^a]dV$  
  = $\displaystyle \oint_S [{\textstyle{\frac{1}{2}}} kQ^l_k(\delta^{ak}{\textstyle{...
...}{2}}}
r^2-x^ax^k)+{\tilde h}^l_0 x^a +{\tilde h}_{0k}x^{[k}\delta^{l]}_a]dS_l.$ (3.29)

Integral'nye velichiny dlya nastoyashih konformnyh killingovyh vektorov fridmanovskoi geometrii legko vosstanavlivayutsya iz (3.28) i (3.29) s pomosh'yu obratnyh lineinyh kombinacii s vremenizavisimymi koefficientami.



<< 3.2 Konformnye vektory Killinga dlya ... | Oglavlenie | 3.4 Novye integral'nye sootnosheniya >>

Publikacii s klyuchevymi slovami: zakony sohraneniya - Obshaya teoriya otnositel'nosti - gravitaciya
Publikacii so slovami: zakony sohraneniya - Obshaya teoriya otnositel'nosti - gravitaciya
Sm. takzhe:
Vse publikacii na tu zhe temu >>

Ocenka: 2.7 [golosov: 106]
 
O reitinge
Versiya dlya pechati Raspechatat'

Astrometriya - Astronomicheskie instrumenty - Astronomicheskoe obrazovanie - Astrofizika - Istoriya astronomii - Kosmonavtika, issledovanie kosmosa - Lyubitel'skaya astronomiya - Planety i Solnechnaya sistema - Solnce


Astronet | Nauchnaya set' | GAISh MGU | Poisk po MGU | O proekte | Avtoram

Kommentarii, voprosy? Pishite: info@astronet.ru ili syuda

Rambler's Top100 Yandeks citirovaniya