Rambler's Top100Astronet    
  po tekstam   po klyuchevym slovam   v glossarii   po saitam   perevod   po katalogu
 

Na pervuyu stranicu << 4.2 Obobshennaya polevaya formulirovka OTO | Oglavlenie | 4.4 Metod Neter-Belinfante i ... >>

Razdely


4.3 Problemy polevoi formulirovki OTO

4.3.1 Differencial'nye zakony sohraneniya dlya obobshennoi formulirovki

Dlya gravitacionnyh uravnenii (4.10) polevoi formulirovki $\hat G^L_{\mu\nu} + \hat \Phi^L_{\mu\nu} =
\kappa{\hat t}^{(tot)}_{\mu\nu}$ differencial'nyi zakon sohraneniya (4.15) vypolnyaetsya tol'ko dlya fonov, kotorye yavlyayutsya prostranstvami Einshteina po Petrovu [18]. Takim obrazom, dlya Richchi-ploskih fonov $\overline{R} = 0$, v samom obshem sluchae dlya prostranstv Einshteina $\overline {R_{\mu\nu}} =
\Lambda \bar g_{\mu\nu}$ vypolnyaetsya $\overline D_\nu \hat t^{(tot)\nu}_\mu = 0$. Odnako, dlya bolee obshih fonov my ne imeem tozhdestva tipa (4.14), prihoditsya konstatirovat', chto $\overline D_\nu\left(\hat G^{L\nu}_{\mu} +
\hat \Phi_{\mu}^{L\nu}\right) \neq 0$ i zaklyuchat', chto $ \overline D_\nu \hat t^{(tot)\nu}_\mu \neq 0$. Etot fakt my [13] ob'yasnili kak sledsvtie vzaimodeistviya so slozhnym fonom, no tol'ko na kachestvennom urovne. Takim obrazom, pervuyu problemu my formuliruem tak:

4.3.2 Proizvol'nye vektory smeshenii

Esli fon -- eto prostranstvo Einshteina (to est' vypolnyaetsya zakon (4.14)) i fon imeet killingovy vektory $\overline\xi^\alpha$, togda neslozhno postroit' sohranyayushiisya tok

$ \partial_\nu \left(\hat t^{(tot)\nu}_\mu \overline\xi^\mu\right)= 0$ i sootvetstvuyushie global'nye zakony sohraneniya. Odnako, kak otmechalos' v lekcii 3 vazhnymi mogut okazat'sya i ne tol'ko killingovy vektory. Ved' s pomosh'yu metoda Neter-Belinfante okazalos' vozmozhnym postroit' sohranyayushiesya toki dlya proizvol'nyh vektorov smeshenii. Poetomu vtoruyu problemu my sformuliruem sleduyushim obrazom:

4.3.3 Superpotencialy v polevoi formulirovke OTO

Nachinaya s rabot Tolmena [19] i Freida [4.20] stalo yasno, chto superpotencialy v OTO igrayut vazhnuyu rol' v postroenii zakonov sohraneniya. Est' takzhe ukazaniya na to, chto oni imeyut mesto i v obobshennoi polevoi formulirovke OTO. Davaite rassmotrim uravneniya polevoi formulirovki na ploskom fone: $\hat G^{\mu\nu}_L = \kappa \hat
t^{\mu\nu}_{(tot)}$, gde levaya chast' opredelennaya v (4.11) mozhet byt' perepisana v vide $\hat G^{\mu\nu}_L = \overline D_\rho \hat {\cal
P}^{\mu\nu\rho}$ s superpotencialom Papapetrou [21]: $\hat {\cal
P}^{\mu\nu\rho}$. Takim obrazom, v etom prostom sluchae obobshennyi tenzor energii-impul'sa vyrazhaetsya cherez divergenciyu ot superpotenciala. Abbott i Dezer [22] postroili obobshennyi superpotencial Papapetrou dlya sluchaya desitterovskogo i anti-desitterovskogo fona s vektorami Killinga etih zhe fonov. Tret'yu problemu my formuliruem poetomu v vide:

4.3.4 Neopredelennost' Boul'vara-Dezera

Rassmatrivaya razlichnye razbieniya dlya opredeleniya vozmushenii na ploskom fone tipa $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$, $\sqrt {-g}g^{\mu\nu} = \eta^{\mu\nu} + \hat l^{\mu\nu},...$ Boul'var i Dezer [23] ustanovili, chto tenzory energii-impul'sa sootvetstvuyushie etim razbieniyam razlichayutsya, nachinaya so vtorogo poryadka po vozmusheniyam. My [15] issledovali etu problemu v samom obshem sluchae dlya proizvolnyh fonov. Dlya vseh vozmozhnyh razbienii tipa


$\displaystyle g_{\mu\nu}$ = $\displaystyle \bar g_{\mu\nu} + h_{\mu\nu},$  
$\displaystyle \hat g^{\mu\nu}$ = $\displaystyle \overline {\hat g^{\mu\nu}} + \hat l^{\mu\nu},
       \rightarrow g^A = \bar g^A + h^A$  
$\displaystyle g^{\mu\nu}$ = $\displaystyle \bar g^{\mu\nu} + r^{\mu\nu},$  
.... = ............. , (4.31)

byl postroen svoi variant polevoi formulirovki s uravneniyami
\begin{displaymath}
\hat G^{L(A)}_{\mu\nu} + \hat \Phi^{L(A)}_{\mu\nu} =
\kappa{\hat t}^{(tot A)}_{\mu\nu},
\end{displaymath} (4.32)

gde gravitacionnye vozmusheniya vzyatye v forme $ \hat l^{\mu\nu}_{(A)} \equiv
h^A ({{ \partial \overline {\hat g^{\mu\nu}}} / {\partial \overline {g^A}}})$ obobshayut $\hat l^{\mu\nu}$. V obshem sluchae byla naidena neopredelennost' v tenzore energii-impul'sa ${\hat t}^{(tot A)}_{\mu\nu}$ v uravneniyah (4.32) dlya razlichnyh razbienii (4.31). Odnako, do sih por ne yasno kakoe iz razbienii (4.31) bolee predpochtitel'no. Chetvertaya problema poetomu est'



<< 4.2 Obobshennaya polevaya formulirovka OTO | Oglavlenie | 4.4 Metod Neter-Belinfante i ... >>

Publikacii s klyuchevymi slovami: zakony sohraneniya - Obshaya teoriya otnositel'nosti - gravitaciya
Publikacii so slovami: zakony sohraneniya - Obshaya teoriya otnositel'nosti - gravitaciya
Sm. takzhe:
Vse publikacii na tu zhe temu >>

Ocenka: 2.7 [golosov: 106]
 
O reitinge
Versiya dlya pechati Raspechatat'

Astrometriya - Astronomicheskie instrumenty - Astronomicheskoe obrazovanie - Astrofizika - Istoriya astronomii - Kosmonavtika, issledovanie kosmosa - Lyubitel'skaya astronomiya - Planety i Solnechnaya sistema - Solnce


Astronet | Nauchnaya set' | GAISh MGU | Poisk po MGU | O proekte | Avtoram

Kommentarii, voprosy? Pishite: info@astronet.ru ili syuda

Rambler's Top100 Yandeks citirovaniya