Rambler's Top100Astronet    
  po tekstam   po klyuchevym slovam   v glossarii   po saitam   perevod   po katalogu
 

Na pervuyu stranicu << 4.3 Problemy polevoi formulirovki OTO | Oglavlenie | Literatura k Lekcii 4 >>

Razdely


4.4 Metod Neter-Belinfante i polevoi podhod k OTO

Kombinaciya etih dvuh metodov pozvolyaet razreshit' opisannye v predydushei chasti problemy. Rezul'taty etoi chasti byli dolozheny na seminare [24].

4.4.1 Tozhdestvo Kaca-Bichaka-Linden-Bella

Napomnim kak byl poluchen zakon sohraneniya KBL [25]. Dlya lagranzhiana

\begin{displaymath}
{\hat{\cal L}}_G = -{1\over 2\kappa} \left(\hat R - \overline {\hat R} +
\partial_\mu \hat k^\mu \right)
\end{displaymath} (4.33)

c $\hat k^\mu \equiv \hat g^{\mu\rho} \Delta^\sigma_{\rho\sigma} -
\hat g^{\rho\sigma} \Delta^\mu_{\rho\sigma}$ i $\Delta^\mu_{\rho\sigma} = \Gamma^\mu_{\rho\sigma}-
\overline{ \Gamma^\mu_{\rho\sigma}}$ bylo vypisano tozhdestvo Neter
\begin{displaymath}
{\pounds_\xi} {\hat{\cal L}}_G + \partial_\mu \left(\xi^\mu {\hat{\cal L}}_G\right) \equiv 0,
\end{displaymath} (4.34)

kotoroe zatem preobrazovano v zakon sohraneniya (sm. (1.29) v lekcii 1):
\begin{displaymath}
J^\mu(\xi) = \partial_\nu \hat J^{\mu\nu} (\xi).
\end{displaymath} (4.35)

Esli v processe preobrazovanii (4.34) ne ispol'zovat' uravnenii Einshteina i ne vezde yavno predstavlyat' ${\hat{\cal L}}_G$, to vmesto (4.35) my poluchim tozhdestvo
$\displaystyle \left[ {{\partial {\hat{\cal L}}_G} \over {\partial \left(\bar D_...
...
\overline D_\nu g_{\rho\sigma} - {\hat{\cal L}}_G \delta^\mu_\nu\right]\xi^\nu$ + $\displaystyle \hat\sigma^{\mu\rho\sigma}\partial_{[\rho}\xi_{\sigma]}$  
$\displaystyle - {{\delta {{\hat{\cal L}}_G}} \over {\delta g_{\rho\sigma}}}
\le...
... g_{\rho\sigma}}}
\left.{ \overline g_{\rho\sigma}} \right\vert^\mu_\nu \xi^\nu$ + $\displaystyle \hat Z^\mu_{(1)} \equiv
\partial_\nu \hat J^{\mu\nu},$ (4.36)

gde superpotencial kak i prezhde (sm. (31) v lekcii 1) imeet vid:
\begin{displaymath}
{\hat J^{\mu\nu}} ={1\over
\kappa}\big({D^{[\mu}\hat
\xi^{\n...
...hat \xi^{\nu]}}\big)+ {1\over \kappa}\hat \xi^{[\mu}
k^{\nu]},
\end{displaymath} (4.37)

a tok v levoi chasti (4.36) imeet bolee obshii vid, chem v (4.35).

4.4.2 Tozhdestvo Neter dlya polevogo lagranzhiana

Gravitacionnyi lagranzhian v polevoi formulirovke (sm. (4.26)) est'

\begin{displaymath}
-{1\over 2\kappa}\hat L^{g}
=-{1\over 2\kappa}
\left[\hat R...
...\mu\nu} - \overline{\hat R} + \partial_\mu{\hat k}^\mu\right].
\end{displaymath} (4.38)

Uchtem svyaz' ${\hat l^{\mu\nu} \equiv \hat g^{\mu\nu} - \overline {\hat g^{\mu\nu}}}$ i oboznachim $-{1\over 2\kappa}\hat L^{g} \equiv {\hat{\cal L}}^{(2)}$. Posle etogo vidno, chto polevoi lagranzhian (4.38) i lagranzhian KBL (4.33) svyazany sootnosheniem:
\begin{displaymath}
{\hat{\cal L}}^{(2)} \equiv {\hat{\cal L}}_G + {1\over 2\kap...
...^{\mu\nu} - \overline {\hat g^{\mu\nu}}) \overline R_{\mu\nu},
\end{displaymath} (4.39)

yavnaya forma kotorogo
\begin{displaymath}
{\hat{\cal L}}^{(2)} \equiv
{1\over 2\kappa}\left[{{\hat g}^...
...-\Delta^\rho_{\mu\sigma}\Delta^\sigma_{\rho\nu}\right)\right].
\end{displaymath} (4.40)

Teper' ispol'zuem tozhdestvo Neter ${\pounds_\xi} {\hat{\cal L}}^{(2)} + \partial_\mu \left(\xi^\mu {\hat{\cal L}}^{(2)}\right)
\equiv 0$, chtoby preobrazovat' ego k vidu:

$\displaystyle \left[{{\partial {\hat{\cal L}}^{(2)}} \over {\partial \left(\bar...
...erline D_\nu g_{\rho\sigma} - {\hat{\cal L}}^{(2)}\delta^\mu_\nu\right]
\xi^\nu$ + $\displaystyle \hat\sigma^{\mu\rho\sigma}\partial_{[\rho}\xi_{\sigma]}$  
$\displaystyle - {{\delta {\hat{\cal L}}^{(2)}} \over {\delta g_{\rho\sigma}}}
\...
...lta \bar g_{\rho\sigma}}}
\left.\bar g_{\rho\sigma} \right\vert^\mu_\nu \xi^\nu$ + $\displaystyle {\hat Z}^{ \mu}_{(2)}
\equiv - \partial_\nu \left({\hat M}^{ \mu\nu}_{(2)\lambda}
\xi^\lambda \right),$ (4.41)

gde
\begin{displaymath}
{\hat M}^{ \mu\nu}_{(2)\lambda} =
-{\hat M}^{ \nu\mu}_{(2)\l...
...\right)}}
\left.{\bar g_{\rho\sigma}} \right\vert^\nu_\lambda.
\end{displaymath} (4.42)

Vychtem iz tozhdestva (4.36) tozhdestvo (4.41), uchtem ravenstvo
   
  $\displaystyle {{\delta {\hat{\cal L}}^{(2)}} \over {\delta \bar g_{\rho\sigma}}...
..._{\rho\sigma} \right\vert^\mu_\nu \equiv
{1 \over {\kappa}}\hat G^{L\mu}_{\nu},$  

svyaz' (4.39), opredelenie (4.42) i poluchim novoe tozhdestvo:
\begin{displaymath}
{1 \over {\kappa}} \hat G^{L\mu}_{\nu}\xi^\nu +
{1 \over \ka...
...mbda \right) \equiv
\partial_\nu \left(*\hat J^{\mu\nu}\right)
\end{displaymath} (4.43)

predstavlennoe v terminah polevogo podhoda.

4.4.3 Superpotencial v polevoi formulirovke OTO

Eshe raz zapishem obshee uravnenie polevoi vormulirovki:

\begin{displaymath}
\hat G^L_{\mu\nu} + \hat \Phi^L_{\mu\nu}
= \kappa\left({\hat t}^g_{\mu\nu} + {\hat t}^m_{\mu\nu}\right),
\end{displaymath} (4.44)

kotoroe nuzhno ispol'zovat', chtoby prevratit' sil'noe tozhdestvo (4.43) v slabyi zakon sohranenniya. Odnako, chto delat' s velichinoi $\hat \Phi^L_{\mu\nu}$, kotoraya otsutstvuet v (4.43)? Okazyvaetsya posle ispol'zovaniya opredelenii (4.25), (4.29) i (4.30) uravnenie (4.44) mozhno perepisat' v vide:
\begin{displaymath}
\hat G^L_{\mu\nu}
= \kappa\left({\hat t}^g_{\mu\nu} +
{\hat t}^M_{\mu\nu} - \overline{ {\hat t}^M_{\mu\nu}}\right),
\end{displaymath} (4.45)

gde
   
  $\displaystyle {\hat t}^M_{\mu\nu}
\equiv 2 {{\delta{\hat{\cal L}}^M \left(\over...
...iv 2 \overline{{{\delta{\hat{\cal L}}^M}\over
{\delta \overline{g^{\mu\nu}}}}}.$  

Teper', konechno, istochnik v (4.45) ne yavlyaetsya simmetrichnym tenzorom energii-impul'sa, sootvetstvuyushim dinamicheskomu lagranzhianu (4.25): ${\hat t}^m_{\mu\nu} \neq
{\hat t}^M_{\mu\nu} - \overline{ {\hat t}^M_{\mu\nu}}
\equiv \delta \hat t^M_{\mu\nu}$. Posle podstanovki uravneniya (4.45) v tozhdestvo (4.43) poluchim:
\begin{displaymath}
\left(\delta {\hat t}_{\nu}^{M\mu} +
{\hat t}_{\nu}^{g\mu} ...
...+ *\hat Z^\mu =
{\partial_\nu} \left( *\hat J^{\mu\nu}\right).
\end{displaymath} (4.46)

Obsudim eto uravnenie. Prezhde vsego, eto est' analog uravneniya KBL (4.35), zdes' v pravoi chasti takzhe stoit divergenciya teper' ot novogo superpotenciala $*\hat J^{\mu\nu}$. Sledovatel'no, levaya chast' est' sohranyayushiisya tok. V zakone sohraneniya uchastvuyut proizvol'nye vektory $\xi^\alpha$ i ono spravedlivo na proizvol'no iskrivlennyh fonah. Takim obrazom mozhno zaklyuchit', chto postroenie (4.46) reshaet srazu pervye tri problemy polevogo podhoda, otmechennye v predydushei chasti.

Pochemu etot uspeh ne byl dostignut ran'she? Okazyvaetsya bylo oshibochnym predpolozhenie (dlya postroeniya sohranyayushegosya toka na proizvol'nom fone) ispol'zovat' istochnik ${\hat t}^m_{\mu\nu}$ v pravoi chasti (4.44), opredelennyi standartnym obrazom v (4.30). Okazyvaetsya neobhodimo ispol'zovat' vozmusheniya $ {\hat t}^M_{\mu\nu} - \overline{ {\hat t}^M_{\mu\nu}}
\equiv \delta \hat t^M_{\mu\nu}$. Otmet'te takzhe, chto v levoi chasti (4.46) soderzhitsya chlen vzaimodeistviya s fonom, prodeklarirovannyi kachestvenno nami ran'she [13]. Z-chlen v (4.46), kak i vezde, obrashaetsya v nul' dlya vektorov Killinga fona.

4.4.4 Sravnenie rezul'tatov metoda Neter-Belinfante i polevogo podhoda

Glavnym rezul'tatom lekcii 2 bylo postroenie zakona sohraneniya (sm. (24) v lekcii 2):

\begin{displaymath}
\hat {\cal T}^\mu_\nu\xi^\nu + \hat {\cal Z}^\mu =
\partial_\nu\hat
{\cal I}^{\mu\nu},
\end{displaymath} (4.47)

gde obobshennyi tenzor energii-impul'sa imeet vid
\begin{displaymath}
\hat {\cal T}^{\mu\nu} = (\hat T^{(\mu}_\rho\overline g^{\nu...
... {1\over \kappa} {\hat l}^{\lambda[\mu} \bar
R^{\nu]}_\lambda,
\end{displaymath} (4.48)

a superpotencial predstavlyaet soboi summu KBL superpotenciala i popravki Belinfante:
\begin{displaymath}
{\cal I}^{\mu\nu} \equiv \hat J^{\mu\nu}+
\hat{S}^{\mu\nu\rho}\xi_\rho.
\end{displaymath} (4.49)

Perepishem uravnenie (4.46) v kompaktnom vide:
\begin{displaymath}
*\hat \Pi^{\mu}_\nu \xi^\nu
+ *\hat Z^\mu =
{\partial_\nu} \left( *\hat J^{\mu\nu}\right),
\end{displaymath} (4.50)

gde
$\displaystyle *\hat \Pi_{\mu\nu}$ $\textstyle \equiv$ $\displaystyle {\hat t}_{\mu\nu}^{M} -
\overline {{\hat t}_{\mu\nu}^{M}} +
{\hat...
...\mu\nu}^{g} +
{1 \over \kappa} \hat l_{\mu}^{\lambda} \overline R_{\lambda\nu},$  
$\displaystyle {*\hat J}^{\mu\nu}$ $\textstyle \equiv$ $\displaystyle \hat J^{\mu\nu} +
{\hat M}^{ \nu\mu}_{(2)\lambda} \xi^\lambda,$  
$\displaystyle {\hat t}^M_{\mu\nu}$ = $\displaystyle \hat T_{\mu\nu} -{\textstyle{\frac{1}{2}}} g_{\mu\nu}\hat T
- {\t...
...eft(\hat T_{\rho\sigma} -{\textstyle{\frac{1}{2}}} g_{\rho\sigma}\hat T\right),$  
$\displaystyle \overline{{\hat t}^M_{\mu\nu}}$ = $\displaystyle \overline{\hat T}_{\mu\nu}.$ (4.51)

Okazyvaetsya, chto popravka Belinfante, opredelennaya v (23) v lekcii 2 i spinovyi chlen (4.42) sovpadayut: $\hat{S}^{\mu\nu\rho} =
{\hat M}^{\nu\mu\rho}_{(2)}$. Uchityvaya etot fakt v (4.49) i v superpotenciale v (4.51), zaklyuchaem

$\displaystyle *\hat J^{\mu\nu} ={\cal I}^{\mu\nu}$ = $\displaystyle {1 \over \kappa} \hat l^{\rho[\mu}\overline D_\rho\xi^{\nu]}
+ \hat {\cal
P}^{\mu\nu}{_\lambda} \xi^\lambda$  
  = $\displaystyle {1 \over \kappa} \left(\hat l^{\rho[\mu}\overline D_\rho\xi^{\nu]...
...igma \hat
l^{\nu]\sigma}-\bar D^{[\mu}\hat l^{\nu ]}_\sigma \xi^\sigma \right),$  

i $*\hat Z^\mu =
\hat{\cal Z}^\mu$ (poslednee ravenstvo proveryaetsya takzhe pryamym vychisleniem). Poetomu dlya (4.47) i (4.50) sleduet:
\begin{displaymath}
*\hat \Pi^{\mu\nu} = \hat {\cal T}^{\mu\nu}.
\end{displaymath} (4.52)

Takim obrazom vse svoistva $\hat {\cal T}^{\mu\nu}$ issledovannye v lekcii 2 v polnoi mere otnosyatsya k $*\hat \Pi^{\mu\nu}$. Podvedem itog:

Sravnivaya tenzory energii-impul'sa (4.48) i v (4.51) nahodim, chto tenzory energii-impul'sa gravitacionnogo polya ne sovpadayut: $ {\hat t}^{\mu\nu}_{g} \neq \hat \tau^{\mu\nu}$. (Tol'ko dlya sluchaya, kogda $\overline R_{\mu\nu} = 0$ i $R_{\mu\nu} =0$ my poluchaem, chto dolzhno byt' ${\hat t}^{\mu\nu}_{g} = \hat \tau^{\mu\nu}$.) Tem ne menee, s ispol'zovaniem fonovyh i dinamicheskih uravnenii Einshteina ravenstvo (4.52) podtverzhdaetsya pryamymi raschetami. Takaya situaciya govorit o slozhnosti v opredelenii, naprimer, energii gravitacionnyh voln na dostatochno slozhnyh fonah. Na etu problemu v chastnoi besede ukazal Kopeikin [26].

4.4.5 Razreshenie neopredelennosti Boul'vara-Dezera

Teper' rassmotrim poslednyuyu: chetvertuyu problemu polevogo podhoda -- eto neopredelennost' v vybore razbienii (4.31). Esli my vyberem proizvol'noe iz razbienii (4.31):

\begin{displaymath}
g^A = \bar g^A + h^A,
\end{displaymath} (4.53)

to shag za shagom sleduya sposobu postroeniya polevoi formulirovki v rabote [15] (poslednii metod izlozhennyi v etoi lekcii) my poluchim uravneniya tipa (4.10), zatem tipa (4.45), i, nakonec, tipa (4.50):
\begin{displaymath}
*\hat \Pi^{\mu}_\nu(\hat l_{(A)}) \xi^\nu
+ *\hat Z^\mu(\ha...
...=
{\partial_\nu} \left( *\hat J^{\mu\nu}(\hat l_{(A)})\right).
\end{displaymath} (4.54)

Raznica lish' v tom, chto argument v etom uravnenii zavisit ot vybora razbieniya (4.53) i vyrazhaetsya cherez nego kak
\begin{displaymath}
\hat l^{\mu\nu}_{(A)} \equiv
h^A {{ \partial \overline {\hat g^{\mu\nu}}} \over {\partial \overline {g^A}}}.
\end{displaymath} (4.55)

Napomnim, chto superpotencial $*\hat J^{\mu\nu}(\hat l_{(A)})$ lineen po svoim argumentam $\hat l^{\mu\nu}_{(A)}$. No esli $h_A^1 \neq h_A^2$, togda $\hat l^{\mu\nu}_{1(A)} =
\hat l^{\mu\nu}_{2(A)} +O(l^2) + ...$ . Eto oznachaet, chto neopredelennost' Boul'vara-Dezera v superpotenciale $*\hat J^{\mu\nu}(\hat l_{1(A)}) \neq
*\hat J^{\mu\nu}(\hat l_{2(A)}) \neq ....$ imeet mesto nachinaya so vtorogo poryadka.

Vernemsya k metodu Neter-Belinfante: ne bylo ogranichenii v vybore peremennyh, my mogli vybrat' lyubuyu iz nih: $g_{\mu\nu}, 
g^{\mu\nu}, \hat g^{\mu\nu},...$ ! V rezul'tate, konechnym i lineinym okazalsya edinstvenno KBL superpotencial, $\hat J^{\mu\nu}(\hat l^{\mu\nu})$, a zatem novyi superpotencial, $\hat {\cal I}^{\mu\nu}(\hat l^{\mu\nu})$. Tol'ko dlya vybora (4.31), ili v (4.55), edinstvenno $h^A = \hat l^{\mu\nu}$ superpotencial $*\hat J^{\mu\nu}(\hat l_{(A)})$ v (4.54) i $\hat {\cal I}^{\mu\nu}(\hat l^{\mu\nu})$ sovpadayut. Etot fakt svidetel'stvuet o preimushestve vybora (4.22). Sushestvuyut i drugie pokazaniya v pol'zu etogo vybora i razbieniya, sootvetvuyushego emu. Superpotencial Abbotta-Dezera [22] yavlyaetsya odnim iz nabora (4.54), a imenno: $*\hat J^{\mu\nu}_{AD} =*\hat J^{\mu\nu}(h^A = h_{\mu\nu})$. Odnako my [27] pokazali, chto takoi superpotencial ne daet pravil'nogo Bondi-Saksa impul'sa na nulevoi beskonechnosti, to est' ne udovletvoryaet odnomu iz osnovnyh estestvennyh testov, v to vremya kak $*\hat J^{\mu\nu}(\hat l^{\mu\nu})$ daet nuzhnyi rezul'tat.



<< 4.3 Problemy polevoi formulirovki OTO | Oglavlenie | Literatura k Lekcii 4 >>

Publikacii s klyuchevymi slovami: zakony sohraneniya - Obshaya teoriya otnositel'nosti - gravitaciya
Publikacii so slovami: zakony sohraneniya - Obshaya teoriya otnositel'nosti - gravitaciya
Sm. takzhe:
Vse publikacii na tu zhe temu >>

Ocenka: 2.7 [golosov: 106]
 
O reitinge
Versiya dlya pechati Raspechatat'

Astrometriya - Astronomicheskie instrumenty - Astronomicheskoe obrazovanie - Astrofizika - Istoriya astronomii - Kosmonavtika, issledovanie kosmosa - Lyubitel'skaya astronomiya - Planety i Solnechnaya sistema - Solnce


Astronet | Nauchnaya set' | GAISh MGU | Poisk po MGU | O proekte | Avtoram

Kommentarii, voprosy? Pishite: info@astronet.ru ili syuda

Rambler's Top100 Yandeks citirovaniya