Rambler's Top100Astronet    
  po tekstam   po klyuchevym slovam   v glossarii   po saitam   perevod   po katalogu
 

Na pervuyu stranicu << 5.1 Kalibrovochnye preobrazovaniya v ... | Oglavlenie | 5.3 Interpretaciya zadannogo fona >>

Razdely


5.2 Izolirovannye sistemy na prostrannstvennoi beskonechnosti

5.2.1 Asimptoticheski ploskoe prostranstvo-vremya

My nazyvaem prostranstvo-vremya asimptoticheski ploskim, esli ono sootvetstvuet izolirovannoi (ostrovnoi) sisteme v ploskom prostranstve-vremeni (sm., naprimer, raboty [4]$^{\!, }$[5]), i v kachestve opredeleniya udovletvoryaet sleduyushim ishodnym ,,naivnym'' trebovaniyam:

Pereformuliruem eto opredelenie v ramkah polevogo podhoda. Dlya etogo nuzhno vybrat' fon. My vybiraem prostranstvo Minkovskogo v lorencevyh koordinatah (5.13). Posle vybora fona vybor koordinat (v silu kovariantnosti vseh vyrazhenii polevoi formulirovki) ne vazhen, no lorencevy koordinaty zdes' udobny, poskol'ku v nih ochevidno asimptoticheskoe povedenie. Po etoi zhe prichine my ne ispol'zuem kryshki v etoi chasti lekcii. Itak, punkt (1) sohranitsya.

5.2.2 Global'nye sohranyayushiesya velichiny

Dlya togo, chtoby opredelit' integraly dvizheniya ostrovnoi sistemy my ispol'zuem vektory Killinga fonovogo prostranstva Minkovskogo:

\begin{displaymath}
\lambda^\mu_{(\alpha)} =\delta^\mu_\alpha,   
\lambda^\mu_{[...
...)} = \{ \lambda^\mu_{(\alpha)}, \lambda^\mu_{[\alpha\beta]}\}.
\end{displaymath} (5.17)

Kak v obychnoi polevoi teorii, global'naya velichina sootvetstvuyushaya $\lambda^\mu_{(K)}$ opredelyaetsya kak
\begin{displaymath}
P^{(K)} = {1 \over c}
\lim_{r \rightarrow
\infty} \int_\Sigma t^{0\mu}_{(tot)} \lambda^{(K)}_\mu dx^3,
\end{displaymath} (5.18)

gde secheniya $\Sigma$ opredelyayutsya kak t = const. Kak vsegda velichiny P(K) sohranyayutsya, esli granichnye usloviya ustroeny tak, chto
\begin{displaymath}
{\lim_{r \rightarrow \infty}}\oint{ d S_k  t^{k\mu}_{tot} 
\lambda^{(K)}_\mu} = 0,
\end{displaymath} (5.19)

gde d Sk element koordinatnogo ob'ema na ,,stenkah'' cilindra (sm. Ris. 1), okruzhayushego izolirovannuyu sistemu.

Uravneniya Einshteina v polevoi formulirovke na ploskom fone mogut byt' perepisany v vide (sm. (12) v lekcii 4):

\begin{displaymath}
t^{\mu\nu}_{(tot)} = {1 \over{\kappa}}  G^{\mu\nu}_L(l) =
{1 \over {\kappa}} U^{\mu\nu\beta}_{    ,\beta},
\end{displaymath} (5.20)

gde my opredelili
\begin{displaymath}
U^{\mu\nu\beta} \equiv {{1\over2} (l^{\mu\nu,\beta} + \eta^{...
...{\mu\beta,\nu} - \eta^{\mu\beta}
l^{\nu\alpha}_{   ,\alpha})}.
\end{displaymath} (5.21)

Podstanovka (5.20) i (5.21) v (5.18) i ispol'zovanie antisimmetrii $U^{\mu\nu\beta} = -U^{\mu\beta\nu}$ privodit eti integraly k vidu:
$\displaystyle P^{(\alpha)}$ = $\displaystyle {1\over{c \kappa}} {\lim_{r \rightarrow \infty}}
\int_{\Sigma} \left[ U^{\alpha 0 i}_{    ,i}\right] dx^3$  
  = $\displaystyle {1\over{2 c \kappa}} 
{\lim_{r \rightarrow \infty}} \oint_{\parti...
...eta}_{   ,\beta} - l^{\alpha
i, 0} - \eta^{\alpha i} l^{0
\beta}_{   ,\beta})},$ (5.22)



$\displaystyle P^{(\left [mn\right ])}$ = $\displaystyle {1\over {2 c \kappa}} {\lim_{r \rightarrow
\infty}} \int_{\Sigma}{ \left [(U^{n0i} x^m - U^{m0i} x^n)_{,i} +
U^{m0n} - U^{n0m} \right]dx^3}$  
  = $\displaystyle {1\over {4 c \kappa}} {\lim_{r
\rightarrow \infty}} \oint_{\parti...
...n0,i} -
l^{ni,0} - \delta^{ni}l^{0\alpha}_{   ,\alpha}) x^m +
\delta^{ni}l^{m0}$  
  - $\displaystyle (l^{m0,i} - l^{mi,0} - \delta^{mi}
l^{0\alpha}_{   ,\alpha})x^n - \delta^{mi}l^{n0}),$ (5.23)



$\displaystyle P^{(\left[m0\right])}$ = $\displaystyle {1\over{2 c \kappa}} {\lim_{r \rightarrow \infty}}
\int_{\Sigma}{
\left[(U^{00i} x^m - U^{m0i} x^0)_{,i} - U^{00m}\right]dx^3}$  
  = $\displaystyle {1 \over {4 c \kappa}} {\lim_{r \rightarrow \infty}}
\oint_{\partial\Sigma}
{d s_i} 
((l^{00,i} - l^{ik}_{  ,k}) x^m$  
  - $\displaystyle (l^{m0,i} - l^{mi,0} - \delta^{mi}
l^{0\alpha}_{   ,\alpha})x^0 -
\delta^{mi} l^{00} + l^{mi}),$ (5.24)

gde dsi -- koordinatnyi element integrirovaniya na 2-sfere, okruzhayushei izolirovannuyu sistemu.

5.2.3 Naislabeishee ubyvanie gravitacionnyh potencialov

Podstanovka potencialov s povedeniem (5.15) v integraly dvizheniya privodit k tomu, chto (5.22) okazyvayutsya horosho opredelennymi, v to vremya kak (5.23) i (5.24) rashodyatsya. Chtoby izbezhat' etogo, dostatochno usilit' usloviya padeniya do

$\displaystyle l^{\mu\nu}$ = $\displaystyle O^{+}(r^{-1}) + O^{-}(r^{-\beta}),   \beta \ge 2,$  
$\displaystyle l^{\mu\nu}_{   ,\pi}$ = $\displaystyle O^{-}(r^{-2}) + O^{+}(r^{-1 - \beta}),$ (5.25)

gde (+) i (-) oznachayut chetnuyu i nechetnuyu funkcii po otnosheniyu k izmeneniyu znaka 3-vektora ${\vec n} = \lbrace {x^k}/r \rbrace $. Takaya asimptotika vpervye byla vvedena Redzhe i Teitel'boimom [6].

Usloviya (5.25) dolzhny byt' Puankare invariantny, poetomu neobhodimo potrebovat' [5]

$\displaystyle l^{\mu\nu}_{   ,\pi\rho}$ = $\displaystyle O^{+}(r^{-3}) + O^{-}(r^{-2 - \beta}),$  
$\displaystyle l^{\mu\nu}_ {   ,\pi\rho\sigma}$ = $\displaystyle O^{-}(r^{-4}) + O^{+}(r^{-3 -\beta}),$  
......... = ................................. , (5.26)

kak eto chasto trebuyut pri posleduyushih integrirovaniyah [7].

Dlya real'noi ostrovoi sistemy padenie bystree, chem v (5.15) (ili v (5.25)) nevozmozhno v silu neobhodimosti sootvetstvovat' zakonu N'yutona v slabopolevom priblizhenii. A vot mozhet li ono byt' slabee bez izmeneniya osnovnyh integral'nyh harakteristik? Okazyvaetsya, chto mozhet [7]$^{\!- }$[9]$^{\!, }$[5]. Chtoby opredelit' usloviya padeniya bolee slabye, chem (5.25) my ispol'zuem kalibrovochno invariantnye svoistva polevoi formulirovki [5]. Kak my ustanovili, uravneniya dvizheniya kalibrovochno invariantny na samih sebe. Eto oznachaet, chto dlya ploskogo fona polnyi tenzor energii-impul'sa pri preobrazovaniyah (5.9) preobrazuetsya kak:

\begin{displaymath}
{t^\prime}^{(tot)}_{\mu\nu} = t^{(tot)}_{\mu\nu} +
{1 \over...
...
\right\vert _{\overline {\hat g^{\mu\nu}} = {\eta^{\mu\nu}}},
\end{displaymath} (5.27)

to est', v silu opredeleniya operatora $G^L_{\mu\nu}$ v (5.20), on invarianten s tochnost'yu do kovariantnoi divergencii. Togda, kalibrovochnaya neinvariantnost' dlya integralov dvizheniya (5.22) - (5.24) takzhe skazhetsya v poverhnostnyh integralah, a ih znacheniya mogut regulirovat'sya asimpototicheskim povedeniem $\xi^\alpha$ i ih proizvodnyh. My stavim zadachu naiti samoe slaboe povedenie $\xi^\alpha$ i ih proizvodnyh, kotoroe garantiruet kalibrovochnuyu invariantnost' (5.22) - (5.24), to est' invariantonost' integralov (5.18) otnositel'no podstanovki (5.27).

Vazhno otmetit', chto vyrazhenie $G^L_{\mu\nu}(l)$ invariantno (v absolyutnom smysle, bezotnositel'no k usloviyam padeniya) otnositel'no

   
  $\displaystyle {l^\prime}^{\mu\nu} = l^{\mu\nu} + \left.\hbox{$\pounds$}_\xi \le...
...^{\mu\nu}}\right)
\right\vert _{\overline {\hat g^{\mu\nu}} = {\eta^{\mu\nu}}},$  

chto yavlyaetsya samym pervym chlenom summy v (5.27), i, takim obrazom, bol'she ne rassmatrivaetsya.

Teper' budem iskat' ogranicheniya na povedenie $\xi^\alpha$. Ispol'zuem sleduyushie ochevidnye trebovaniya:

Predpolozhim usloviya padeniya dlya $\xi^\alpha$ v forme:

\begin{displaymath}
\xi^\alpha = O^{-}(r^{1 - \varepsilon}) + O^{+}(r^{1 - \delta}).
\end{displaymath} (5.28)

Chtoby 4-impul's $P^{(\alpha)}$ byl invarianten otnositel'no kalibrovochnyh preobrazovanii (5.9) neobhodimo predpolozhit', chto nechetnaya chast' ot kalibrovochnoi dobavki ubyvaet bystree chem r-2, to est'
\begin{displaymath}
O^{-}\left(
\partial_\alpha
\left[\sum^{\infty}_{k = 1}{1\ov...
...at l^{\mu\nu}\right)\right]\right)
< O^{-}\left(r^{-2}\right).
\end{displaymath} (5.29)

V silu punkta (ii) rassmatrivaem vse chleny tipa $\xi\xi_{,\alpha\beta\gamma}$ v (5.29) kak nezavisimye. Togda, v silu punkta (iv) neravenstvo (5.29) daet ogranichenie na povedenie $\xi^\alpha$:
\begin{displaymath}
\varepsilon > {1\over 2},    \delta > {1\over 2}.
\end{displaymath} (5.30)

Etogo usloviya dostatochno, chtoby vse ostavshiesya chleny v kalibrovochnoi summe ne davali vklada v $P^{(\alpha)}$. Analogichno, trebovanie sohraneniya pri kalibrovochnyh preobrazovaniyah $P^{(\left[\alpha\beta \right])}$ privodit k
\begin{displaymath}
\varepsilon + \delta > 2,    \delta > 1,    \varepsilon \ge ...
...i}   
\beta > 2,    
\varepsilon > 0   {\rm esli}   \beta = 2.
\end{displaymath} (5.31)

Kombinirovanie (5.30) i (5.31) privodit k ogranicheniyam na povedenie (5.28)
\begin{displaymath}
\varepsilon + \delta > 2,    1 \ge \varepsilon > {1\over 2},    \delta > 1,
\end{displaymath} (5.32)

kotoroe odnovremenno garantiruet invariantnost' otnositel'no (5.9) $P^{(\alpha)}$ i $P^{(\left[\alpha\beta \right])}$. Uslovie $\varepsilon \le 1$ vyrazhaet tot fakt, chto v real'noi ostrovnoi sisteme gravitacionnye peremennye ne mogut padat' bystree n'yutonova potenciala.

Takim obrazom, podstanovka (5.28) s usloviyami (5.32) v (5.9) daet povedenie dlya gravitacionnyh peremennyh v vide:

\begin{displaymath}
{l^\prime}^{\mu\nu} = O^{+}(r^{-\varepsilon}) + O^{-}(r^{-\delta}).
\end{displaymath} (5.33)

Asimptotika (5.33) s usloviyami (5.32) zametno slabee, chem ishodnaya (5.25). Tem ne menee vse integraly (5.18) (ili v yavnom vyrazhenii -- (5.22) - (5.24)) sohranyayut svoi znacheniya. Malo togo, pri kazhdom posleduyushem kalibrovochnom preobrazovanii (5.9) s (5.28) i (5.32):

   
  $\displaystyle {l^{\prime\prime}}^{\mu\nu} = {l^\prime}^{\mu\nu} +
\sum^{\infty}...
...ox{$\pounds$}_\xi^k \left(\overline {\hat g^{\mu\nu}} + \hat l'^{\mu\nu}\right)$  

my uzhe ne narushim povedenie (5.33), znacheniya P(K) takzhe ostayutsya prezhnimi.

Naislabeishee asimptoticheskoe povedenie (5.33) s usloviyami (5.32) yavlyayutsya novymi rezul'tatami, poskol'ku oni utochnyayut i ispravlyayut izvestnye rezul'taty [7]$^{\!- }$[9].



<< 5.1 Kalibrovochnye preobrazovaniya v ... | Oglavlenie | 5.3 Interpretaciya zadannogo fona >>

Publikacii s klyuchevymi slovami: zakony sohraneniya - Obshaya teoriya otnositel'nosti - gravitaciya
Publikacii so slovami: zakony sohraneniya - Obshaya teoriya otnositel'nosti - gravitaciya
Sm. takzhe:
Vse publikacii na tu zhe temu >>

Ocenka: 2.7 [golosov: 106]
 
O reitinge
Versiya dlya pechati Raspechatat'

Astrometriya - Astronomicheskie instrumenty - Astronomicheskoe obrazovanie - Astrofizika - Istoriya astronomii - Kosmonavtika, issledovanie kosmosa - Lyubitel'skaya astronomiya - Planety i Solnechnaya sistema - Solnce


Astronet | Nauchnaya set' | GAISh MGU | Poisk po MGU | O proekte | Avtoram

Kommentarii, voprosy? Pishite: info@astronet.ru ili syuda

Rambler's Top100 Yandeks citirovaniya