Rambler's Top100Astronet    
  po tekstam   po klyuchevym slovam   v glossarii   po saitam   perevod   po katalogu
 

Na pervuyu stranicu << 1.1 Klassicheskie psevdotenzory i ... | Oglavlenie | 1.3 Postroenie sohranyayushihsya tokov ... >>

Razdely


1.2 Superpotencial Kaca-Krushciela -- obobshennyi superpotencial Freida

Narisovannaya vyshe kartina o zakonah sohraneniya v OTO trebuet svoego obobsheniya i razvitiya. Kakie zhe momenty dolzhny byt' uchteny? My by opredelili ih tak:

Otmetim, chto punkt (vii) my ne budem podrobno obsuzhdat' v etih lekciyah. Pri neobhodimosti budem lish' otmechat' udovletvoryaet ili net obsuzhdaemaya model' etim estestvennym testam.

1.2.1 Zakony sohraneniya Kaca-Bichaka-Linden-Bella

Kac, Bichak i Linden-Bell [12] (dalee my oboznachaem etu rabotu kak KBL) predlozhili takie zakony sohraneniya, kotorye udovletvoryayut predlozhennym trebovaniyam. Postroenie osnovyvaetsya na lagranzhiane


\begin{displaymath}
{\hat{\cal L}}_G = -{1\over 2\kappa} \left(\hat R - \overline {\hat R} + \partial_\mu
\hat k^\mu \right).
\end{displaymath} (1.27)

Zdes' i dalee ispol'zuyutsya oboznacheniya: $g_{\mu\nu}$ - fizicheskaya metrika; $\bar g_{\mu\nu}$ - fonovaya metrika s sootvetstvuyushei kovariantnoi proizvodnoi $\overline D_\mu$; cherta sverhu nad simvolom vezde oznachaet fonovuyu velichinu;


$\hat R = \sqrt{-g} R$ i $\overline {\hat R} = \sqrt{-\bar g}\overline R$;


$\hat k^\mu = \hat g^{\mu\rho} \Delta^\sigma_{\rho\sigma} -
\hat g^{\rho\sigma} \Delta^\mu_{\rho\sigma}$, $  \Delta^\mu_{\rho\sigma} = \Gamma^\mu_{\rho\sigma}-
\overline{ \Gamma^\mu_{\rho\sigma}}$.


Lagranzhian (1.27) obobshaet dlya proizvol'nyh fonov izvestnyi kovariantnyi lagranzhian Rozena na ploskom fone [13]. Esli zhe $\bar g_{\mu\nu} \rightarrow \eta_{\mu\nu} $, togda $\overline D_\mu \rightarrow \partial_\mu$ i (1.27) perehodit tochno v einshteinovsii usechennyi lagranzhian (1.1).

Posledovatel'noe prilozhenie procedury Neter k lagranzhianu (1.27) s proizvol'nym $\xi^\mu$: ${\pounds_\xi} {\hat{\cal L}}_G + \partial_\mu \left(\xi^\mu {\hat{\cal L}}_G\right) \equiv 0$ dalo vozmozhnost' postroit' sohranyayushiisya tok $\hat J^\mu(\xi)$ i superpotencial $\hat J^{\mu\nu}(\xi)$ s sootvetstvuyushim differencial'nym zakonom sohraneniya:

\begin{displaymath}
\partial_\mu \hat J^\mu (\xi) \equiv 0,
\end{displaymath} (1.28)


\begin{displaymath}
\hat J^\mu(\xi) = \partial_\nu \hat J^{\mu\nu} (\xi).
\end{displaymath} (1.29)

Poskol'ku (1.28) pryamo sleduet iz (1.29), to sootnosheniya tipa poslednego my chasto takzhe nazyvaem zakonami sohraneniya.

1.2.2 Superpotencial Kaca-Krushciela

Superpotencialy igrayut ochen' vazhnuyu rol' v opredelenii sohranyayushihsya velichin. Destvitel'no, davaite podstavim znachenie toka (1.29) v (1.26) i uchtem antisimmetriyu $\hat J^{\mu\nu}(\xi)$:

\begin{displaymath}
{\cal P}(\xi) =
\int_{\Sigma}
\hat J^0(\xi)d^3 x =
\oint_{\partial\Sigma}
\hat J^{0k}(\xi)ds_k,
\end{displaymath} (1.30)

to est' my poluchili, chto sohranyayushiisya integral predstavlyaetsya v vide poverhnostnogo integrala po granice $\Sigma$.

Superpotencial v vyrazhenii KBL (1.29) byl poluchen ran'she nezavisimo Kacem [14] i Krushcielom [15]. Togda on byl postroen dlya bolee prostyh sistem, tem ne menee bolee slozhnaya model' razrabotannaya KBL ne izmenila ego vid:

\begin{displaymath}
{\hat J^{\mu\nu}(\xi)} ={1\over
\kappa}\big({D^{[\mu}\hat
\x...
...hat \xi^{\nu]}}\big)+ {1\over \kappa}\hat \xi^{[\mu}
k^{\nu]}.
\end{displaymath} (1.31)

Esli $\bar g_{\mu\nu} \rightarrow \eta_{\mu\nu} $, a vektor $\xi^{\mu}$ vybrat' kak killingovskii vektor translyacii v prostranstve Minkovskogo, to ${\hat J^{\mu\nu}(\xi)}$ perehodit v superpotencial Freida (1.12).

1.2.3 Sohranyayushiisya tok KBL

Sohranyayushayasya vektornaya plotnost' (tok KBL) v tozhdestve (1.28) imeet vid:

\begin{displaymath}
\hat J^\mu(\xi) = \hat \Theta^\mu_\nu \xi^\nu +
\hat \sigma^{\mu\rho\sigma}\overline D_{\rho}\xi_{\sigma}+ \hat Z^\mu(\xi).
\end{displaymath} (1.32)

Ego struktura sleduyushaya. Obobshennyi tenzor energii-impul'sa imeet vid:
\begin{displaymath}
\hat \Theta^\mu_\nu = \left(\hat T^\mu_\nu -
\overline {\hat...
...ight)
\overline R_{\rho\sigma}\delta^\mu_\nu +
\hat t^\mu_\nu,
\end{displaymath} (1.33)

kotoryi tozhe nuzhno opisat' po chastyam. Pervoe slagaemoe predstavlyaet vozmushenie material'nogo tenzora energii-impul'sa po otnosheniyu k fonovomu, vtoroe -- ,,potencial'noe'' vzaimodeistvie s fonovoi geometriei, a tret'e est' tenzor energii-impul'sa gravitacionnogo polya:
$\displaystyle 2\kappa \hat t^\mu_\nu$ = $\displaystyle \hat g^{\rho\sigma} \left(\Delta^\lambda_{\rho\lambda} \Delta^\mu...
...mbda_{\lambda\nu} -
2\Delta^\mu_{\rho\lambda} \Delta^\lambda_{\sigma\nu}\right)$  
  - $\displaystyle \hat g^{\rho\sigma} \left(\Delta^\eta_{\rho\sigma}
\Delta^\lambda...
...\rho_{\lambda\nu} -
\Delta^\sigma_{\lambda\sigma} \Delta^\rho_{\rho\nu}\right).$ (1.34)

Esli $\bar g_{\mu\nu} \rightarrow \eta_{\mu\nu} $, to $\hat t^\mu_\nu$ perehodit v psevdotenzor Einshteina.

Vtoroi chlen v (1.32) -- tak nazyvaemyi spinovyi chlen:

$\displaystyle 2\kappa \hat \sigma^{\mu\rho\sigma}$ = $\displaystyle (g^{\mu\rho} \overline g^{\sigma\nu} +\overline g^{\mu\sigma} g^{\rho\nu} -
g^{\mu\nu} \overline g^{\rho\sigma})\hat \Delta^\lambda_{\nu\lambda}$  
  - $\displaystyle (g^{\nu\rho} \overline g^{\sigma\lambda} +\overline g^{\nu\sigma}...
...ambda} -
g^{\nu\lambda} \overline g^{\rho\sigma}) \hat \Delta^\mu_{\nu\lambda}.$ (1.35)

Eta velichina sama po sebe takzhe izvestna davno. Popytka postroit' sohranyayushiisya uglovoi moment s pomosh'yu psevdotenzora Einshteina privela Papapetrou [16] k neobhodimosti ispol'zovat' vyrazhenie (1.35).

Struktura poslednego chlena v (1.32) slozhnaya i ne tak vazhna zdes', odnako mozhno skazat', chto $\hat Z^\mu(\xi)$ ischezaet dlya killingovyh vektorov fona.


Podvedem nekotoryi itog. Velichiny KBL sootvetstvuyut vsem sformulirovannym trebovaniyam (i) - (vii). Eto nesomnennoe dostoinstvo modeli. Odnako, vopros edinstvennosti dolzhen byt' obsuzhden bolee podrobno. On mozhet byt' razdelen na dve chasti:


a) Naskol'ko odnoznachen vybor lagranzhiana (1.27)?


b) Naskol'ko odnoznachny KBL velichiny pri uzhe vybrannom lagranzhiane (1.27)?


Punkt a) detal'no obsuzhdalsya v rabotah [17]$^{\!, }$[18]. Vyvod takoi, chto trebovanie ispol'zovat' pri var'irovanii granichnye usloviya Dirihle edinstvennym obrazom privodyat k (1.27) i superpotencialu (1.31). Tam zhe obsuzhdayutsya preimushestva uslovii Dirihle. Nezavisimo, razvivaya kovariantnuyu Gamil'tonovu formulirovku gravitacionnyh teorii, k etomu zhe vyvodu prishli avtory raboty [19]. Sluduyushaya chast' lekcii, c odnoi storony, obobshaet rezul'taty KBL (v tom smysle, chto konstruiruyutsya zakony sohraneniya dlya proizvol'noi polevoi teorii so vspomolatel'nym fonom). Eto pozvolyaet otvetit' na vopros punkta b). S drugoi storony, rezul'taty sleduyushei chasti odnovremenno est' obobshenie na proizvol'no iskrivlennyi fon rezul'tatov Mickevicha [8], kotoryi skonstruiroval sohranyayushiesya velichiny dlya proizvol'noi teorii, no na ploskom fone.



<< 1.1 Klassicheskie psevdotenzory i ... | Oglavlenie | 1.3 Postroenie sohranyayushihsya tokov ... >>

Publikacii s klyuchevymi slovami: zakony sohraneniya - Obshaya teoriya otnositel'nosti - gravitaciya
Publikacii so slovami: zakony sohraneniya - Obshaya teoriya otnositel'nosti - gravitaciya
Sm. takzhe:
Vse publikacii na tu zhe temu >>

Ocenka: 2.7 [golosov: 106]
 
O reitinge
Versiya dlya pechati Raspechatat'

Astrometriya - Astronomicheskie instrumenty - Astronomicheskoe obrazovanie - Astrofizika - Istoriya astronomii - Kosmonavtika, issledovanie kosmosa - Lyubitel'skaya astronomiya - Planety i Solnechnaya sistema - Solnce


Astronet | Nauchnaya set' | GAISh MGU | Poisk po MGU | O proekte | Avtoram

Kommentarii, voprosy? Pishite: info@astronet.ru ili syuda

Rambler's Top100 Yandeks citirovaniya