Rambler's Top100Astronet    
  po tekstam   po klyuchevym slovam   v glossarii   po saitam   perevod   po katalogu
 

Na pervuyu stranicu << 2. Razvitie i obobshenie ... | Oglavlenie | 2.2 Prilozhenie procedury Belinfante ... >>

Razdely


2.1 Klassicheskii metod Belinfante

2.1.1 Problemy opredeleniya uglovogo momenta v polevoi teorii

Vnachale my korotko izlozhim osnovnye polozheniya original'noi raboty Belinfante [1], vo mnogom dazhe sleduya ego stilyu i oboznacheniyam. Rassmotrim teoriyu nekotoryh dinamicheskih polei predstavlennyh obobshennym simvolom $\psi^A$ s lagranzhianom

\begin{displaymath}
\hat L = \hat L \left(\psi^A, \partial_\alpha \psi^A, \eta_{\mu\nu}
\right)
\end{displaymath} (2.1)

v prostranstve Minkovskogo s metrikoi Minkovskogo $\eta_{\mu\nu}$. Plotnost' kanonicheskogo tenzora energii-impul'sa v takoi teorii opredelyaetsya obychnym obrazom:
\begin{displaymath}
\hat t_\nu^{\mu} = \sum_A {{\partial \hat L}\over {\partial(\partial_\mu \psi^A)}}
\partial_\nu \psi^A -\delta^\mu_\nu \hat L
\end{displaymath} (2.2)

i sohranyaetsya
\begin{displaymath}
\partial_\mu \hat t_\nu^{\mu} = 0
\end{displaymath} (2.3)

na vypolnennyh uravneniyah dvizheniya. Sleduya pravilam obychnoi mehaniki tenzornuyu plotnost' uglovogo (orbital'nogo) momenta sledovolo by opredelit' kak
\begin{displaymath}
\hat {m}_{kl}^{ \alpha} =
x_{[k}\hat t_{l]}^{\alpha}.
\end{displaymath} (2.4)

Zdes' voznikaet problema: opredelennyi takim obrazom uglovoi moment ne sohranyaetsya
\begin{displaymath}
\partial_\alpha
\hat { m}_{kl}^{  \alpha} =
\hat t_{[kl]} \neq 0
\end{displaymath} (2.5)

dazhe s uchetom zakona sohraneniya (2.3). Delo v tom, chto tenzor energii-impul'sa opredelennyi v (2.2) v obshem sluchae ne simmetrichen. Situaciyu v (2.5) mog by spasti sohranyayushiisya simmetrichnyi tenzor energii-impul'sa, kotoryi mozhno bylo by postroit' po drugim pravilam, ili simmetrizovat' uzhe imeyushiisya (2.2).

2.1.2 Simmetrizaciya Belinfante

Vtoruyu iz etih vozmozhnostei ispol'zoval Belinfante [1], kotoryi predlozhil sleduyushee. Pust' pri beskonechno malyh vrasheniyah opredelyaemyh antisimmetrichnym parametrom $\delta \omega^{\mu\nu}$ variacii koordinat i dinamicheskih peremennyh imeyut vid: $\delta x^\nu = x_\mu \delta \omega^{\mu\nu}$ i $\delta \psi^A = \delta \omega^{\mu\nu} {\bf S}_{\mu\nu} \psi^A$, gde ${\bf S}_{\mu\nu}$ -- operator. Opredelim velichinu

\begin{displaymath}
\hat B_{\lambda\mu\nu} = {\textstyle{\frac{1}{2}}}\left(\hat...
...da} + \hat f_{\mu\lambda\nu} -
\hat f_{\nu\lambda\mu}\right),
\end{displaymath} (2.6)

gde
\begin{displaymath}
\hat f_{\mu\nu}^{  \alpha} \equiv
\sum_A {{\partial \hat L}\...
... {\partial(\partial_\alpha \psi^A)}}{\bf S}_{[\mu\nu]}
\psi^A.
\end{displaymath} (2.7)

Dalee velichinu (2.6) ili ee obobsheniya my budem nazyvat' popravkoi Belinfante. Teper' dobavim proizvodnuyu ot (2.6) k kanonicheskomu vyrazheniyu (2.2):
\begin{displaymath}
\hat {t}^{(B)}_{\mu\nu} =
\hat t_{\mu\nu} +
\partial_\alpha \hat B_{ \mu\nu}^{\alpha}.
\end{displaymath} (2.8)

Kak i prezhde, v (2.3): $\partial_\mu \hat {t}_\nu^{(B)\mu} = 0$ na uravneniyah dvizheniya, no teper' eshe: $\hat {t}^{(B)}_{\mu\nu} =
\hat {t}^{(B)}_{\nu\mu}$. Blagodarya etim dvum ravenstvam ,,ispravlennyi'' orbital'nyi uglovoi moment:
   
  $\displaystyle \hat {m}_{kl}^{(B)\alpha} =
x_{[k}\hat {t}_{l]}^{(B)\alpha}$  

sohranyaetsya $\partial_\alpha \hat {m}_{kl}^{(B)\alpha} = 0$.

2.1.3 Teorema Neter i metod Belinfante

V original'nom izlozhenii metod Belinfante predstavlen, faktichesti, na urovne uravnenii dvizheniya. Seichas my opishem ego edinym obrazom v ramkah lagranzhevoi teorii. Dlya etogo zapishem lagranzhian (2.1) v obshekovariantnom vide:

\begin{displaymath}
\hat L = \hat L \left(\psi^A, \bar D_\alpha \psi^A, \overline g_{\mu\nu}
\right),
\end{displaymath} (2.9)

gde metrika $\overline g_{\mu\nu}$ mozhet opisyvat' lyuboe fiksirovannoe prostranstvo-vremya, ne obyazatel'no ploskoe. Dlya kovariantnogo lagranzhiana (2.9) zapishem tozhdestvo Neter:
\begin{displaymath}
{\pounds_\xi} \hat L + \partial_\alpha\left(\xi^\alpha \hat L\right) \equiv 0
\end{displaymath} (2.10)

s opredelennoi kak v lekcii 1 proizvodnoi Li:
   
  $\displaystyle \hbox{$\pounds$}_\xi \psi^A
= -\xi^\alpha \overline D_\alpha \psi^A + \overline D_\beta \xi^\alpha
\left.\psi ^A \right\vert _\alpha^\beta$  

i proizvol'nym vektorom $\xi^\alpha$. Tozhdestvo (2.10) analiziruetsya analogichno tomu kak eto predstavleno v lekcii 1 (bolee detal'no poznakomit'sya s metodom analiza tozhdestv tipa (2.10) mozhno v knige Mickevicha [2]). V rezul'tate (2.10) perehodit v zakon sohraneniya $\partial_\alpha \hat I^\alpha \equiv 0$ dlya toka
\begin{displaymath}
\hat I^\alpha \equiv \hat T^\alpha_\sigma \xi^\sigma -
\ha...
... \right\vert^\alpha_\sigma \xi^\sigma +\hat Z_{(\psi)}^\alpha.
\end{displaymath} (2.11)

Struktura etogo toka vazhna i my ee obsudim podrobno. Pervyi chlen -- eto simmetrichnyi (tak nazyvaemyi metricheskii) tenzor energii-impul'sa polei $\psi^A$:
\begin{displaymath}
\hat T_{\alpha\beta} \equiv {{\delta \hat L} \over {\delta \...
...equiv
2{{\delta \hat L} \over {\delta \bar g^{\alpha\beta}}},
\end{displaymath} (2.12)

vtoroe slagaemoe vyrazheno uzhe izvestnym kanonicheskim tenzorom energii-impul'sa (2.2), tol'ko teper' my zapisyvaem ego v yavno kovariantnom vide:
\begin{displaymath}
\hat t^\alpha_\sigma \equiv
{{\partial \hat L} \over {\parti...
...A\right)}}
\bar D_\sigma \psi^A - \hat L \delta^\alpha_\sigma.
\end{displaymath} (2.13)

V tret'em slagaemom v (2.11) glavnuyu rol' igraet spinovyi tenzor:
\begin{displaymath}
\hat \Sigma^{\alpha\beta}_{  \sigma} \equiv -
{{\partial \ha...
..._\alpha \psi^A\right)}}
\left.\psi^A \right\vert^\beta_\sigma.
\end{displaymath} (2.14)

My predpolagaem, chto uravneniya dvizheniya
   
  $\displaystyle {{\delta \hat L} \over {\delta \psi^A}} = 0$  

vypolnyayutsya i ne budem bol'she uchityvat' predposlednii chlen v (2.11). Nakonec, strukturu Z-chlena my ne vypisyvaem, no otmechaem, chto on ischezaet na killingovyh vektorah fona.

V silu tozhdestva $\partial_\alpha \hat I^\alpha \equiv 0$ dolzhen sushestvovat' superpotencial, to est' antisimmetrichnaya tenzornaya plotnost'. Deistvitel'no, takoi superpotencial sushestvuet, i zakon sohraneniya $\partial_\alpha \hat I^\alpha \equiv 0$ mozhet byt' zamenen zakonom sohraneniya:

\begin{displaymath}
\hat I^\alpha \equiv \partial_\beta \hat I^{\alpha\beta}
\eq...
..._\beta\left( \hat M^{\alpha\beta}_{  \sigma}\xi^\sigma\right),
\end{displaymath} (2.15)

gde velichina
\begin{displaymath}
\hat M^{\alpha\beta}_{  \sigma} \equiv
{{{\partial \hat L} \...
...mu\nu}\right)}}
\left.\bar g_{\mu\nu}\right\vert^\beta_\sigma}
\end{displaymath} (2.16)

antisimmetrichna po verhnim indeksam: $\hat M^{\alpha\beta}_{  \sigma} = -
\hat M^{\beta\alpha}_{  \sigma}$, hotya (2.16) ne pokazyvaet etogo yavno.

Sravnivaya opredeleniya (2.7) i (2.14) my opredelyaem popravku Belinfante tochno takzhe kak v (2.6):

\begin{displaymath}
\hat S^{\alpha\beta\gamma}_{(\psi)} =
\hat \Sigma^{\gamma[\a...
...gma^{\alpha[\gamma\beta]} -
\hat \Sigma^{\beta[\gamma\alpha]},
\end{displaymath} (2.17)

gde $\hat S^{\alpha\beta\gamma}_{(\psi)} = -
\hat S^{\beta\alpha\gamma}_{(\psi)}$. Chtoby uprostit' izlozhenie perepishem zakon sohraneniya (2.15) dlya proizvol'nyh killingovyh vektorov fona $\xi^\alpha = {\bar\xi}^\alpha$:
   
  $\displaystyle \hat T^\alpha_\sigma {\bar\xi}^\sigma -
\left(\hat t^\alpha_\sigm...
...) =
\partial_\beta\left[\hat M^{\alpha\beta}_{  \sigma}{\bar\xi}^\sigma \right]$  

i dobavim k obeim chastyam $-\partial_\beta\left(\hat S^{\alpha\beta\gamma}_{(\psi)}\bar\xi_\gamma\right)$:
\begin{displaymath}
\hat T^\alpha_\sigma {\bar\xi}^\sigma -
\left(\hat t^\alpha_...
...gma
-\hat S^{\alpha\beta\gamma}_{(\psi)}\bar\xi_\gamma\right].
\end{displaymath} (2.18)

V silu opredeleniya (2.17) spinovyi chlen v levoi chasti (2.18) kompensiruetsya dobavkoi Belinfante. Krome togo, okazyvaetsya, chto vyrazheniya v formulah (2.16) i (2.17) sovpadayut v obshem sluchae: $\hat M^{\alpha\beta\gamma} =
\hat S^{\alpha\beta\gamma}_{(\psi)}$; v silu etogo pravaya chast' (2.18) obrashaetsya v nul', to est' posle korrekcii superpotencial ischezaet. V rezul'tate (2.18) uproshaetsya do ravenstva
   
  $\displaystyle \hat T^\alpha_\sigma {\bar\xi}^{\sigma} -
\left(\hat t^\alpha_\si...
...line D_\beta \hat S^{\alpha\beta}_{(\psi)\sigma}\right) {\bar\xi}^{\sigma} = 0.$  

Teper' zapishem simmetrizovannyi s pomosh'yu metoda Belinfante, kak eto bylo sdelano v (2.8), kanonicheskii tenzor energii-impul'sa:
\begin{displaymath}
\hat t^{(B)\alpha}_\sigma =
\left(\hat t^\alpha_\sigma +
\overline D_\beta \hat S^{\alpha\beta}_{(\psi)\sigma}\right).
\end{displaymath} (2.19)

Sravnivaya poslednie dva ravenstva nahodim, chto simmetrizovannyi tenzor energii-impul'sa (2.19) raven metricheskomu tenzoru energii-impul'sa (2.12):

$\hat t^{(B)\alpha}_\sigma = \hat
T^\alpha_\sigma$.


Elektordinamika, lagranzhian kotoroi sootvetstvuet forme (2.9),

   
  $\displaystyle {\hat{\cal L}}^{\dag }=-{1\over 16\pi}\sqrt{-\bar g}\bar
g^{\mu\r...
...\mu\nu}F_{\rho\sigma},      F_{\mu\nu}=\partial_\mu A_\nu -
\partial_\nu A_\mu.$  

yavlyaetsya horoshei illyustraciei izlozhennogo. Kanonicheskii tenzor energii- impul'sa (2.13) i tenzor spina (2.14) preobretayut vid:
$\displaystyle \hat t^{\dag\mu}_{ \nu}$ = $\displaystyle -{\sqrt{-\bar g}\over 4\pi}\left(F^{\mu\rho}\overline D_\nu
A_\rho - {1\over 4}F^{\rho\sigma}F_{\rho\sigma}\delta^\mu_\nu\right),$  
$\displaystyle \hat \Sigma^{\dag\mu\rho\sigma}$ = $\displaystyle -{\sqrt{-\bar g}\over 4\pi}F^{\mu[\rho}A^{\sigma]}.$  

Togda popravka Belinfante (2.17) zapisyvaetsya kak
   
  $\displaystyle \hat S^{\dag\mu\nu\rho}=
\hat \Sigma^{\dag\rho[\mu\nu]}+
\hat \Si...
...-
\hat \Sigma^{\dag\nu[\rho\mu]}= {\sqrt{-\bar g}\over 4\pi} F^{\mu\nu}A^{\rho}$  

i privodit k Belinfante modificirovannomu tenzoru energii-impul'sa (2.19):
   
  $\displaystyle {\hat T}^{\dag\mu\nu} = {\sqrt{-\bar g}\over
4\pi}\left(F^{\mu\rho}F_{\rho}^{ \nu}+{1\over 4}\bar g^{\mu\nu}
F^{\rho\sigma}F_{\rho\sigma}\right).$  

S drugoi storony, eto est' izvestnyi simmetrichnyi, kalibrovochno invariantnyi tenzor energii-impul'sa elektoromagnitnogo polya, kotoryi poluchaetsya var'irovaniem ${\hat{\cal L}}^{\dag }$ po zadannoi metrike.

<< 2. Razvitie i obobshenie ... | Oglavlenie | 2.2 Prilozhenie procedury Belinfante ... >>

Publikacii s klyuchevymi slovami: zakony sohraneniya - Obshaya teoriya otnositel'nosti - gravitaciya
Publikacii so slovami: zakony sohraneniya - Obshaya teoriya otnositel'nosti - gravitaciya
Sm. takzhe:
Vse publikacii na tu zhe temu >>

Ocenka: 2.7 [golosov: 106]
 
O reitinge
Versiya dlya pechati Raspechatat'

Astrometriya - Astronomicheskie instrumenty - Astronomicheskoe obrazovanie - Astrofizika - Istoriya astronomii - Kosmonavtika, issledovanie kosmosa - Lyubitel'skaya astronomiya - Planety i Solnechnaya sistema - Solnce


Astronet | Nauchnaya set' | GAISh MGU | Poisk po MGU | O proekte | Avtoram

Kommentarii, voprosy? Pishite: info@astronet.ru ili syuda

Rambler's Top100 Yandeks citirovaniya