Rambler's Top100Astronet    
  po tekstam   po klyuchevym slovam   v glossarii   po saitam   perevod   po katalogu
 

Na pervuyu stranicu << 2.1 Klassicheskii metod Belinfante | Oglavlenie | 2.3 Obobshennaya procedura Belinfante ... >>

Razdely


2.2 Prilozhenie procedury Belinfante k modeli Kaca, Bichaka i Linden-Bella

2.2.1 Obosnovanie ispol'zovaniya metoda Belinfante v modeli KBL

Neobhodimost' ispol'zovaniya fona zalozhena v samom opredelenii metoda Belinfante [1]. V teoriyah s lagranzhianom (2.9) vzaimodeistviya rasssmatrivayutsya na zadannom fone, kotoryi yavlyaetsya neobhodimoi sostavlyayushei modeli, i eto privodit k uspehu primeneniya metoda. Simmetrizuya psevdotenzor Einshteina, Papapetrou [3] vynuzhden byl ispol'zovat' vspomogatel'nuyu metriku Minkovskogo. I, deistvitel'no, primenenie etogo metoda v OTO bez ispol'zovaniya fona [4] daet ,,nerazumnye'' nulevye rezul'taty dlya sohranyayushihsya velichin. Mozhno li v OTO, v bolee slozhnyh sluchayah, chem rassmotrel Papapetrou [3], primenyat' etot metod?

Cnova vspomnim o modeli Kaca-Bichaka-Linden-Bella [5] (KBL), kotoraya byla podrobno izlozhena v lekcii 1. S odnoi storony, v model' KBL vklyuchena fonovaya metrika, napomnim, KBL lagranzhian est'

\begin{displaymath}
{\hat{\cal L}}_G = {\hat{\cal L}} - \bar {{\hat{\cal L}}}   ...
... \over 2\kappa} \left(\hat R + \partial_\mu \hat k^\mu\right),
\end{displaymath} (2.20)

gde

$
\hat R = \hat g^{\theta\sigma}\left(
\overline D_\rho \Delta^\rho_{\theta\sigm...
...a^\eta_{\theta\rho}\right)
+ \hat g^{\theta\sigma}\overline R_{\theta\sigma},
$

$\hat k^\mu = \hat g^{\mu\rho} \Delta^\sigma_{\rho\sigma} -
\hat g^{\rho\sigma} \Delta^\mu_{\rho\sigma}$,

$\Delta^\alpha_{\mu\nu} \equiv
{\textstyle{\frac{1}{2}}} g^{\alpha\beta}
\left(\...
...} g_{\mu\nu}\right) = \Gamma^\alpha_{\mu\nu} -
\overline \Gamma^\alpha_{\mu\nu}$.

S drugoi storony, v zakone sohraneniya KBL
\begin{displaymath}
J^\mu(\xi) = \partial_\nu \hat J^{\mu\nu} (\xi)
\end{displaymath} (2.21)

forma toka standartna:
\begin{displaymath}
\hat J^\mu = \hat \theta^\mu_\nu \xi^\nu +
\hat \sigma^{\mu\rho\sigma}\overline D_{[\rho}\xi_{\sigma]}+ \hat Z^\mu(\xi),
\end{displaymath} (2.22)

s obobshennym tenzorom energii-impul'sa $\hat \theta^\mu_\nu$ i predstavlennym yavno spinovym chlenom $\hat \sigma^{\mu\rho\sigma}$. Procedura Belinfante kak raz dolzhna preobrazovat' $\hat \theta^\mu_\nu$ tak, chtoby spinovyi chlen ischez iz yavnogo rassmotreniya kak eto proishodit v (2.19). Takim obrazom my imeem horoshie predposylki dlya primeneniya metoda Belinfante k modeli KBL. Voznikaet vopros: A zachem kak-to izmenyat' KBL model', kotoraya obladaet ryadom dostoinstv, udovletvoryaya trebovaniyam (i) - (vii) otmechennym v lekcii 1? Okazyvaetsya, krome dostoinstv, sushestvuyut i problemnye voprosy, kotorye mozhno pred'yavit' k KBL modeli, i kotorye mozhno razreshit' Belinfante metodom.



2.2.2 Prilozhenie metoda Belinfante k KBL modeli

V ostatke etoi chasti lekcii 2 izlagayutsya rezul'taty, opublikovannye v rabotah [10]$^{\!- }$[12]. Itak, dlya spinovyh koefficientov KBL postroim popravku Belinfante po standartnym pravilam (2.17):

\begin{displaymath}
\hat{S}^{\mu\nu\rho}= -
\hat{S}^{\nu\mu\rho}=\hat\sigma^{\rho[\mu\nu]}+
\hat\sigma^{\mu[\rho\nu]}-\hat\sigma^{\nu[\rho\mu]}.
\end{displaymath} (2.23)

Perepishem zakon sohraneniya KBL (2.21) v ekvivalentnoi forme:
   
  $\displaystyle \hat J^\mu + \partial_\nu\left(\hat{S}^{\mu\nu\rho}\xi_\rho\right)
=
\partial_\nu\left(\hat J^{\mu\nu}+\hat{S}^{\mu\nu\rho}\xi_\rho\right),$  

gde vvedem oboznacheniya dlya novyh toka i superpotenciala, i predstavim strukturu toka:
\begin{displaymath}
\hat {\cal I}^{\mu} = \hat {\cal T}^\mu_\nu\xi^\nu + \hat {\cal Z}^\mu =
\partial_\nu\hat {\cal I}^{\mu\nu}.
\end{displaymath} (2.24)

Zametim, chto spinovyi chlen, kak i polozheno, otsutstvuet. ,,Simmetrizovannyi'' obobshennyi tenzor energii-impul'sa imeet vid:
\begin{displaymath}
\hat {\cal T}^\mu_\nu= \hat \theta^\mu_\nu + \bar D_\rho
\hat S^{\mu\rho}_{   \nu},
\end{displaymath} (2.25)

a Z-chlen, kak i vezde, obrashaetsya v nul' na killingovyh vektorah fona.

Novyi superpotencial imeet formu:

\begin{displaymath}
\hat
{\cal I}^{\mu\nu}= {1 \over \kappa} \hat l^{\rho[\mu}\o...
...\rho\xi^{\nu]}
+ \hat {\cal
P}^{\mu\nu}{_\lambda} \xi^\lambda,
\end{displaymath} (2.26)

gde $\hat l^{\mu\nu} \equiv \hat g^{\mu\nu} -
\overline {\hat g}^{\mu\nu}$ -- vozmushenie metricheskoi plotnosti otnositel'no fonovoi. Superpotengcial (2.26) antisimmetrichen, poskol'ku tenzornaya plotnost' $\hat {\cal P}^{\nu\mu\rho}$ antisimmetrichna po pervym dvum indeksam. Velichina
\begin{displaymath}
\hat {\cal P}^{\mu\nu\rho} =
{1 \over 2\kappa} \overline D_\...
...u} \hat
l^{\nu\rho}+\bar g^{\sigma\nu} \hat
l^{\mu\rho}\right)
\end{displaymath} (2.27)

interesna i sama po sebe: dlya $ {\bar g}^{\mu\nu} = {\eta}^{\mu\nu}$ ona perehodit v izvestnyi superpotencial Papapetrou [3]. Takim obrazom superpotencial (2.26) yavlyaetsya obobsheniem superpotenciala Papapetrou na proizvol'no iskrivlennyi fon i dlya proizvol'nyh vektorov $\xi^\alpha$.

2.2.3 Svoistva novyh zakonov sohraneniya

V rezul'tate sohraneny vse poleznye svoistva KBL modeli, korotko povtorim ih:



Krome sohranennyh svoistv poyavilis' novye:




<< 2.1 Klassicheskii metod Belinfante | Oglavlenie | 2.3 Obobshennaya procedura Belinfante ... >>

Publikacii s klyuchevymi slovami: zakony sohraneniya - Obshaya teoriya otnositel'nosti - gravitaciya
Publikacii so slovami: zakony sohraneniya - Obshaya teoriya otnositel'nosti - gravitaciya
Sm. takzhe:
Vse publikacii na tu zhe temu >>

Ocenka: 2.7 [golosov: 106]
 
O reitinge
Versiya dlya pechati Raspechatat'

Astrometriya - Astronomicheskie instrumenty - Astronomicheskoe obrazovanie - Astrofizika - Istoriya astronomii - Kosmonavtika, issledovanie kosmosa - Lyubitel'skaya astronomiya - Planety i Solnechnaya sistema - Solnce


Astronet | Nauchnaya set' | GAISh MGU | Poisk po MGU | O proekte | Avtoram

Kommentarii, voprosy? Pishite: info@astronet.ru ili syuda

Rambler's Top100 Yandeks citirovaniya