O raspredelenii bol'shih poluosei orbit vnesolnechnyh planet
<< 4. Funkcii raspredeleniya | Oglavlenie | 6. Zaklyuchenie >>
5. Chislennye rezul'taty
Issleduem oblast' obnaruzhimosti . Ee harakternyi razmer zadaetsya parametrom , vhodyashim v uravnenie (3). Pereidem v vyrazhenii dlya k bezrazmernym massam , , , gde , - massy Solnca i Yupitera sootvetstvenno. PoluchaemZdes' - geliocentricheskaya krugovaya skorost' tela nulevoi massy na rasstoyanii . Za poslednee razumno vzyat' astronomicheskuyu edinicu, togda m/s (s izbytochnoi tochnost'yu). Issleduem oblast' znachenii parametra v zavisimosti ot mass i . Porogovuyu velichinu luchevoi skorosti polozhim ravnoi 10 m/s, chto sootvetstvuet tochnosti sovremennyh nablyudenii. Zametim, chto dlya bol'shinstva otkrytyh k nastoyashemu vremeni planet luchevye skorosti prevyshayut m/s. V tabl.1 dany znacheniya privedennoi massy (sverhu) i parametra obnaruzhimosti (snizu) dlya razlichnyh (pervyi stolbec, v skobkah privedeny nazvaniya planet Solnechnoi sistemy, imeyushih blizkie k massy) i s ukazaniem sootvetstvuyushego spektral'nogo klassa dlya zvezd glavnoi posledovatel'nosti (verhnyaya stroka). Iz tabl.1 vidno, chto na bol'shom (neskol'ko a. e.) udalenii ot central'noi zvezdy v nastoyashee vremya mozhno nablyudat' tol'ko planety s massami . Esli ogranichit' zonu, v kotoroi mogut nahodit'sya planety, radiusom 100 a. e., to statisticheski znachimoe raspredelenie bol'shih poluosei orbit mozhno poluchit' tol'ko dlya planet s massami . Chtoby postroit' analogichnoe raspredelenie dlya planet s massami Yupitera, neobhodimy nablyudeniya s m/c. V etom sluchae, kak sleduet iz (14), znacheniya uvelichatsya v 9 raz po sravneniyu s privedennymi v tabl. 1. No etogo nedostatochno dlya postroeniya raspredeleniya planet s massami Saturna. Planety s massami Urana i Neptuna mozhno obnaruzhit' tol'ko v neposredstvennoi blizosti ot poverhnosti zvezdy (radius Solnca - 0.005 a. e.). Planety zemnogo tipa dannym metodom zafiksirovat' nevozmozhno.
Tablica 1.
Znacheniya privedennoi massy planety i kriticheskogo
rasstoyaniya (a.e.)
v zavisimosti ot i pri m/s
v zavisimosti ot i pri m/s
0.25 | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | |
M9 | M0 | K0 | G2 | F6 | F1 | |
10 | ||||||
3000 | 2000 | 1000 | 800 | 600 | 500 | |
1 | ||||||
(Yupiter) | 30 | 20 | 10 | 8 | 6 | 5 |
0.3 | ||||||
(Saturn) | 3 | 1 | 1 | 0.7 | 0.6 | 0.5 |
0.05 | ||||||
(Uran, Neptun) | 0.08 | 0.04 | 0.03 | 0.02 | 0.02 | 0.01 |
0.003 | ||||||
(Venera, Zemlya) | ||||||
0.0002 | ||||||
(Merkurii) |
Privedennaya massa - velichina nenablyudaemaya. Neposredstvenno iz nablyudenii vyvoditsya
gde - period obrasheniya planety, vzyaty iz kataloga [6]. Svedeniya o massah zvezd bralis' iz rabot [6,7]. Dlya zvezd, massy kotoryh ne udalos' naiti v ukazannyh istochnikah, velichiny byli vychisleny s pomosh'yu tret'ego zakona Keplera na osnove dannyh [6] o periodah i bol'shih poluosyah orbit planet. V tablice eti dannye otmecheny kursivom. Na osnove svedenii o massah i byli vychisleny privedennye massy , rasstoyaniya :
i veroyatnosti obnaruzheniya planet. Znacheniya privedeny dlya porogovyh velichin luchevoi skorosti i 3 m/s, sootvetstvuyushih tochnosti sovremennyh nablyudenii i blizkih k predel'no realizuemoi tochnosti metoda. Parametr pokazyvaet, na kakom maksimal'nom udalenii ot zvezdy mozhet byt' zaregistrirovana planeta, dvizhushayasya po krugovoi orbite, pri zadannom . Veroyatnosti vychisleny dlya m/s. Analiz tabl. 2 pokazyvaet, chto bol'shie poluosi prakticheski vseh otkrytyh planet sushestvenno men'she dazhe pri m/s. Veroyatnosti otkrytiya dlya podavlyayushego bol'shinstva planet prevyshayut 0.90. Isklyuchenie sostavlyayut HD 4208 (), Eri (), HD 83443 c (), 47 UMa c (), HD 16141 (). Eto legko ob'yasnit'. Vo-pervyh, v nablyudaemyh sistemah znacheniya luchevoi skorosti pochti vsegda prevoshodyat rassmatrivaemye znacheniya v neskol'ko raz, a inogda i na poryadki. V takih sistemah planety dolzhny byt' massivnymi i (ili) dvigat'sya na nebol'shom rasstoyanii ot zvezdy. Obnaruzhenie zvezd s malymi pozvolit naiti bolee dalekie planety. Kak vidno iz tabl. 2, kogda znacheniya i blizki, raznosti mezhdu i maly (naprimer, HD 83443 c, HD 16141, 47 UMa c, Eri) - planety nablyudayutsya na sravnimyh s rasstoyaniyah. Iz 76 vnesolnechnyh planet tol'ko u 22 privedennaya massa men'she privedennoi massy Yupitera . Dlya bol'shinstva iz etih planet . Ispol'zuya tabl.1, legko ocenit' maksimal'nye rasstoyaniya, na kotoryh eti planety mogli byt' otkryty: oni budut v 9-81 raz men'she ukazannyh v tablice. Dlya planety s massoi Yupitera eto rasstoyanie sostavit 0.1-0.9 a. e., chto soglasuetsya s dannymi tabl. 2. Vo-vtoryh, sushestvennym selektivnym faktorom yavlyaetsya vremya, zatrachennoe na nablyudenie konkretnoi zvezdy. Postepenno etot faktor budet oslabevat', no spustya 7 let posle nachala regulyarnyh nablyudenii prezhdevremenno ozhidat' otkrytiya planet s bol'shimi poluosyami 20-30 a. e. i periodami orbital'nogo dvizheniya neskol'ko desyatkov i soten let. V nastoyashee vremya nel'zya sdelat' nadezhnye statisticheskie vyvody o nablyudaemom raspredelenii elementov orbit vnesolnechnyh planetnyh sistem, poskol'ku tochnost' sovremennyh nablyudenii
nedostatochna dlya obnaruzheniya planet s massoi na rasstoyaniyah, bol'shih neskol'kih astronomicheskih edinic. Effekt selekcii, opredelyaemyi v pervuyu ochered' tochnost'yu nablyudenii, privodit k tomu, chto planety otkryvayutsya na sravnitel'no nebol'shih rasstoyaniyah - ot zvezd (sm. tabl. 2). Primer Solnechnoi sistemy pokazyvaet, chto maksimal'nye radiusy orbit planet mogut prevyshat' . Esli zadat' raspredelenie , to mozhno svyazat' mezhdu soboi srednie znacheniya radiusov planetnyh orbit: - poluchaemoe iz nablyudenii i sootvetstvuyushee plotnosti ; - istinnoe, opredelyaemoe raspredeleniem , a takzhe , , poluchaemye otbrasyvaniem vseh planet s .
Tablica 2.
Parametry vnesolnechnyh planetnyh sistem.
Rasstoyaniya dany v a.e., skorosti - v m/s
Zvezda | |||||||||
HD 83443 b | 0.82 | 0.34 | 0.038 | 0.08 | 57.0 | 1.1 | 12.6 | 0.98 | |
HD 46375 | 1.00 | 0.25 | 0.041 | 0.02 | 35.2 | 0.5 | 5.6 | 0.96 | |
HD 179949 | 1.24 | 0.93 | 0.045 | 0.00 | 112.0 | 5.7 | 62.8 | 1.00 | |
HD 187123 | 1.00 | 0.54 | 0.042 | 0.01 | 72.0 | 2.4 | 26.2 | 0.99 | |
Boo | 1.20 | 4.14 | 0.047 | 0.02 | 474.0 | 115.7 | 1285.6 | 1.00 | |
BD | 1.10 | 0.48 | 0.046 | 0.05 | 60.6 | 1.7 | 18.9 | 0.99 | |
HD 75289 | 1.05 | 0.46 | 0.048 | 0.00 | 54.0 | 1.6 | 18.1 | 0.99 | |
HD 209458 | 1.03 | 0.63 | 0.046 | 0.02 | 82.0 | 3.1 | 34.7 | 0.99 | |
51 Peg | 0.98 | 0.46 | 0.052 | 0.01 | 55.2 | 1.7 | 19.4 | 0.99 | |
And b | 1.10 | 0.68 | 0.059 | 0.02 | 70.2 | 3.4 | 37.8 | 0.99 | |
HD 68988 | 1.20 | 1.90 | 0.071 | 0.14 | 187.0 | 24.4 | 270.8 | 1.00 | |
HD 168746 | 0.94 | 0.24 | 0.066 | 0.00 | 28.0 | 0.5 | 5.5 | 0.93 | |
HD 217107 | 0.96 | 1.29 | 0.072 | 0.14 | 139.7 | 14.0 | 156.0 | 1.00 | |
HD 162020 | 0.70 | 13.73 | 0.072 | 0.28 | 1813.0 | 2174.3 | 24158.8 | 1.00 | |
HD 130322 | 0.79 | 1.15 | 0.092 | 0.05 | 115.0 | 13.6 | 150.7 | 1.00 | |
HD 108147 | 1.06 | 0.35 | 0.098 | 0.56 | 37.0 | 0.9 | 10.4 | 0.95 | |
HD 38529 | 1.40 | 0.77 | 0.129 | 0.27 | 53.6 | 3.4 | 38.2 | 0.98 | |
55 Cnc | 0.90 | 0.93 | 0.118 | 0.03 | 75.8 | 7.8 | 86.5 | 0.99 | |
HD 13445 = GJ 86 | 0.79 | 4.23 | 0.117 | 0.04 | 379.0 | 183.5 | 2038.6 | 1.00 | |
HD 195019 | 0.98 | 3.55 | 0.136 | 0.01 | 271.0 | 104.2 | 1157.5 | 1.00 | |
HD 6434 | 1.00 | 0.48 | 0.154 | 0.30 | 37.0 | 1.9 | 20.8 | 0.96 | |
HD 192263 | 0.75 | 0.81 | 0.152 | 0.22 | 68.2 | 7.1 | 78.7 | 0.99 | |
HD 83443 c | 0.79 | 0.17 | 0.174 | 0.42 | 14.0 | 0.3 | 3.3 | 0.64 | |
GJ 876 c | 0.32 | 0.56 | 0.130 | 0.27 | 81.0 | 7.9 | 88.2 | 0.99 | |
CrB | 1.00 | 0.99 | 0.224 | 0.07 | 61.3 | 7.9 | 88.2 | 0.99 | |
HD 74156 b | 1.05 | 1.55 | 0.276 | 0.65 | 108.0 | 18.5 | 205.4 | 0.99 | |
HD 168443 b | 0.84 | 7.64 | 0.295 | 0.53 | 470.0 | 562.9 | 6254.5 | 1.00 | |
GJ 876 b | 0.32 | 1.89 | 0.207 | 0.10 | 210.0 | 90.4 | 1004.8 | 1.00 | |
HD 121504 | 1.02 | 0.89 | 0.317 | 0.13 | 45.0 | 6.3 | 70.1 | 0.97 | |
HD 178911 b | 0.90 | 6.46 | 0.326 | 0.14 | 343.0 | 373.9 | 4154.6 | 1.00 | |
HD 16141 | 0.99 | 0.22 | 0.351 | 0.28 | 10.8 | 0.4 | 4.4 | 0.34 | |
HD 114762 | 0.82 | 10.96 | 0.351 | 0.33 | 615.0 | 1186.7 | 13185.5 | 1.00 | |
HD 80606 | 0.90 | 3.43 | 0.438 | 0.93 | 414.0 | 106.3 | 1180.7 | 1.00 | |
70 Vir | 1.10 | 7.42 | 0.482 | 0.40 | 316.2 | 405.5 | 4505.1 | 1.00 | |
HD 52265 | 1.13 | 1.14 | 0.493 | 0.29 | 45.4 | 9.3 | 103.5 | 0.97 | |
HD 1237 | 0.98 | 3.45 | 0.505 | 0.51 | 164.0 | 98.4 | 1093.2 | 1.00 | |
HD 37124 | 0.91 | 1.13 | 0.547 | 0.31 | 48.0 | 11.4 | 126.3 | 0.98 | |
HD 82943 c | 1.05 | 0.88 | 0.728 | 0.54 | 34.0 | 6.0 | 66.5 | 0.94 | |
HD 8574 | 1.10 | 2.23 | 0.756 | 0.40 | 76.0 | 36.6 | 406.5 | 0.99 | |
HD 169830 | 1.40 | 2.95 | 0.823 | 0.34 | 83.0 | 50.3 | 559.1 | 0.99 | |
And c | 1.10 | 2.05 | 0.828 | 0.24 | 58.0 | 30.9 | 343.9 | 0.99 | |
HD 12661 | 0.81 | 2.84 | 0.795 | 0.19 | 89.1 | 80.7 | 896.3 | 1.00 | |
HD 89744 | 1.40 | 7.17 | 0.883 | 0.70 | 257.0 | 297.5 | 3305.2 | 1.00 | |
HD 202206 | 0.90 | 14.68 | 0.768 | 0.42 | 554.0 | 1936.3 | 21514.9 | 1.00 | |
HD 134987 | 1.05 | 1.58 | 0.810 | 0.24 | 50.2 | 19.3 | 214.0 | 0.98 | |
HD 17051 = Hor | 1.03 | 2.98 | 0.970 | 0.16 | 80.0 | 69.8 | 776.0 | 0.99 | |
HD 92788 | 1.06 | 3.88 | 0.969 | 0.28 | 113.0 | 115.1 | 1278.3 | 1.00 | |
HD 142 | 1.10 | 1.36 | 0.980 | 0.37 | 40.0 | 13.6 | 151.3 | 0.96 | |
HD 28185 | 0.90 | 5.59 | 1.000 | 0.06 | 168.0 | 281.3 | 3125.0 | 1.00 | |
HD 177830 | 1.15 | 1.24 | 1.100 | 0.40 | 34.0 | 10.8 | 120.3 | 0.95 | |
HD 4203 | 1.06 | 1.64 | 1.090 | 0.53 | 51.0 | 20.6 | 228.4 | 0.97 | |
HD 27442 | 1.20 | 1.42 | 1.180 | 0.02 | 34.0 | 13.6 | 151.2 | 0.96 | |
HD 210277 | 0.92 | 1.29 | 1.120 | 0.45 | 39.1 | 14.7 | 162.8 | 0.96 | |
HD 82943 b | 1.05 | 1.63 | 1.160 | 0.41 | 46.0 | 20.4 | 227.0 | 0.97 | |
HD 19994 | 1.29 | 1.83 | 1.260 | 0.20 | 42.0 | 21.0 | 233.0 | 0.97 | |
HD 114783 | 0.92 | 0.99 | 1.200 | 0.10 | 27.0 | 8.6 | 95.9 | 0.93 | |
HD 222582 | 1.00 | 5.18 | 1.350 | 0.71 | 179.6 | 217.4 | 2415.2 | 1.00 | |
HD 23079 | 1.10 | 2.76 | 1.480 | 0.03 | 62.0 | 56.1 | 623.3 | 0.99 | |
HD 141937 | 1.00 | 9.69 | 1.480 | 0.40 | 247.0 | 763.3 | 8481.6 | 1.00 | |
HD 160691 | 1.08 | 1.99 | 1.650 | 0.62 | 54.0 | 29.7 | 330.0 | 0.97 | |
HD 213240 | 0.95 | 3.75 | 1.600 | 0.31 | 91.0 | 120.1 | 1334.4 | 0.99 | |
16 Cyg B | 1.00 | 1.68 | 1.690 | 0.68 | 50.0 | 22.9 | 254.0 | 0.96 | |
HD 4208 | 0.93 | 0.81 | 1.690 | 0.04 | 18.3 | 5.7 | 63.5 | 0.84 | |
HD 10697 | 1.10 | 6.08 | 2.120 | 0.11 | 114.0 | 272.2 | 3024.8 | 1.00 | |
47 UMa b | 1.03 | 2.54 | 2.090 | 0.06 | 49.3 | 50.7 | 563.8 | 0.98 | |
HD 190228 | 1.20 | 5.01 | 2.250 | 0.43 | 96.0 | 170.0 | 1888.4 | 0.99 | |
HD 50554 | 1.10 | 4.91 | 2.380 | 0.42 | 95.0 | 177.6 | 1973.7 | 0.99 | |
And d | 1.10 | 4.29 | 2.560 | 0.31 | 70.4 | 135.5 | 1505.9 | 0.99 | |
HD 33636 | 0.99 | 7.71 | 2.620 | 0.39 | 148.0 | 486.4 | 5404.6 | 1.00 | |
HD 106252 | 1.05 | 6.81 | 2.610 | 0.54 | 139.0 | 356.4 | 3959.7 | 1.00 | |
HD 168443 c | 0.84 | 16.96 | 2.870 | 0.20 | 289.0 | 2774.0 | 30821.9 | 1.00 | |
14 Her | 0.85 | 4.05 | 3.170 | 0.45 | 70.4 | 156.3 | 1736.9 | 0.99 | |
HD 39091 | 1.10 | 9.94 | 3.500 | 0.67 | 194.0 | 727.6 | 8084.8 | 1.00 | |
HD 74156 c | 1.05 | 7.46 | 3.470 | 0.40 | 121.0 | 427.9 | 4753.9 | 1.00 | |
Eri | 0.80 | 0.88 | 3.360 | 0.60 | 19.0 | 7.8 | 87.1 | 0.76 | |
47 UMa c | 1.03 | 0.76 | 3.730 | 0.10 | 11.1 | 4.5 | 50.5 | 0.42 |
Primer.
Ravnomernoe raspredelenie:Vychislim plotnosti veroyatnosti i . Iz (6) s uchetom (18) i (4)
Iz (19) sleduet, chto pri malyh nablyudaemoe raspredelenie radiusov orbit planet mozhet sil'no otlichat'sya ot deistvitel'nogo. Dlya planet s massoi poryadka Yupitera i men'she vypolnenie etogo usloviya garantirovano. Deistvitel'no, dlya Solnechnoi sistemy sleduet vzyat' , (Yupiter), (Saturn). Poetomu dlya Yupitera , . Dlya Saturna , . Pohozhie rezul'taty my poluchili dlya stepennogo i pokazatel'nogo raspredelenii.
<< 4. Funkcii raspredeleniya | Oglavlenie | 6. Zaklyuchenie >>
Publikacii s klyuchevymi slovami:
ekzoplaneta
Publikacii so slovami: ekzoplaneta | |
Sm. takzhe:
Vse publikacii na tu zhe temu >> |
Astrometriya
-
Astronomicheskie instrumenty
-
Astronomicheskoe obrazovanie
-
Astrofizika
-
Istoriya astronomii
-
Kosmonavtika, issledovanie kosmosa
-
Lyubitel'skaya astronomiya
-
Planety i Solnechnaya sistema
-
Solnce