Rambler's Top100Astronet    
  po tekstam   po klyuchevym slovam   v glossarii   po saitam   perevod   po katalogu
 

Na pervuyu stranicu << Predislovie | Oglavlenie | 2. Relyativistskii gaz s vyrozhdeniem >>

Chast' I. FIZIKA ZVEZDNO' MATERII

Glava 1. Termodinamicheskie svoistva veshestva

Razdely


Veshestvo bol'shinstva zvezd imeet vysokuyu temperaturu i sravnitel'no umerennuyu plotnost'. V etih usloviyah kineticheskaya energiya chastic mnogo bol'she energii vzaimodeistviya mezhdu nimi i model' nerelyativistskogo, nevyrozhdennogo ideal'nogo gaza okazyvaetsya horoshim priblizheniem k real'nosti. Termodinamicheskie svoistva veshestva planet, naprimer. Zemli, izucheny gorazdo huzhe. Temperatura ih pri toi zhe plotnosti znachitel'no nizhe i veshestvo nahoditsya v zhidkoi i tverdoi fazah, issledovanie kotoryh sopryazheno s sushestvennymi trudnostyami.

V nedrah zvezd veshestvo i izluchenie nahodyatsya v termodinamicheskom ravnovesii, kotoroe ustanavlivaetsya bystrymi processami stolknovenii chastic, poglosheniem i ispuskaniem fotonov. Izluchenie, naryadu s gazom, sozdaet davlenie, protivodeistvuyushee sile tyazhesti.

Veshestvo zvezd sostoit iz razlichnyh himicheskih elementov, osnovnymi iz kotoryh yavlyayutsya vodorod i gelii. Na Solnce, naprimer, oni sostavlyayut v summe bolee 98,5% plotnosti veshestva. Ostal'naya chast' massy Solnca sostoit iz smesi prakticheski vseh stabil'nyh izotopov tablicy Mendeleeva. V tabl. 1 ukazano soderzhanie naibolee obil'nyh elementov, nablyudaemyh na Solnce [5]. Pri izmenenii ot centra do poverhnosti zvezdy temperatury na tri-chetyre poryadka i plotnosti na ~ 10 poryadkov izmenyaetsya sostoyanie ionizacii veshestva.

V central'nyh oblastyah zvezd s $\emph{M} \geq \emph{M}_{\odot } $ vse atomy prakticheski polnost'yu ionizovany.

Pust' $i$ - nomer himicheskogo elementa, kotoryi mozhet nahodit'sya v razlichnyh sostoyaniyah ionizacii ot neitral'nogo (\( j=0 \)) do polnost'yu ionizovannogo (\( j=i \)). Oboznachim cherez \( \epsilon_{\textrm{ij}} \) energiyu svyazi \( j \)-kratno ionizovannogo iona elementa \( i \), opredelyaemuyu tak, chto dlya polnost'yu ionizovannogo iona \( \epsilon_{\textrm{ij}} \) = 0. Udel'naya energiya E (erg g-1), davlenie R (din sm-2) i udel'naya entropiya S (erg g-1 K-1) dannoi smesi atomov, ionov i elektronov s izlucheniem imeyut vid [145] .


$$
%\begin{displaymath}
%E=\frac{3}{2}\frac{kT}{\mu m_{u}}+\frac{aT^{4}}{\rho }-\Sigma _{i}\Sigma ^{i}_{j=0}\frac{x_{i}}{m_{i}}y_{ij}\epsilon _{ij} \end{displaymath}
E={3\over2}{kT\over\mu m_{\rm u}}+ {\alpha T^4\over\rho}-
\sum_i \sum_{j=0}^i {x_i\over m_i} y_{ij} \epsilon_{ij},
$$ (1.1)


$$
%\begin{displaymath}P=\frac{\rho kT}{\mu m_{u}}+\frac{1}{3}aT^{4} \end{displaymath}
P = {\rho k T\over\mu m_{\rm u}}+{1\over 3}\alpha T^4,
$$ (1.2)


$$
%\begin{displaymath}S=\frac{k}{\rho }\Sigma _{i}\Sigma _{j=0}^{i}n_{ij}\left\{ \frac{5}{2}+\ln\left[ \left( \frac{m_{i}kT}{2\pi \hbar ^{2}}\right) ^{3/2}\frac{g_{ij}}{n_{ij}}\right] \right\} +\frac{k}{\rho }n_{e}\left\{ \frac{5}{2}+\ln\left[ \left( \frac{m_{e}kT}{2\pi \hbar }\right) ^{3/2}\frac{2}{n_{e}}\right] \right\} +\frac{4}{3}\frac{aT^{3}}{\rho } \end{displaymath}
\eqalign{
S&={k\over\rho}\sum_i \sum_{j=0}^i n_{ij}\left\{ {5\over 2} \ln\left[
\left(m_i k T\over 2\pi \hbar^2\right)^{3/2}
{g_{ij}\over n_{ij}}\right]\right\}\cr
&\qquad+{k\over \rho} n_{\rm e} \left\{ {5\over 2}+\ln\left[
\left(m_{\rm e} k T\over 2\pi \hbar^2\right)^{3/2} {2\over n_{\rm e}} \right]\right\}
+{4\over 3} {a T^3\over \rho},\cr
}
$$ (1.3)

Zdes' ispol'zovany oboznacheniya:

\( \rho \) - plotnost',

\( T \) - temperatura,

\( k=1.38067\cdot 10^{-16}\mbox{~erg}\cdot \mbox{K}^{-1} \) - postoyannaya Bol'cmana,

\( \hbar =1.0546\cdot 10^{-27}\mbox{~erg}\cdot \mbox{s} \) - postoyannaya Planka,

\( a=\pi ^{2}k^{4}/15\hbar ^{3}c^{3}=7.565\cdot 10^{-15}\mbox{~erg}\cdot \mbox{sm}^{-3}\cdot \mbox{K}^{-4} \) - postoyannaya plotnosti izlucheniya,

\( c=2.9979\cdot 10^{10}\mbox{~sm}\cdot \mbox{s}^{-1} \) - skorost' sveta v vakuume,

\( x_{ij} \) - massovaya dolya elementa s atomnym nomerom i,


Tablica 1. Rasprostranennost' naibolee obil'nyh himicheskih elementov (Solnce, [5])
Element Simvol Atomnyi
nomer
Atomnaya
massa
Desyatichnyi logarifm
rasprostranennosti
po chislu atomov po masse
Vodorod H 1 1.0080 12.00 12.00
Gelii He 2 4.0026 10.93 11.53
Uglerod C 6 12.0111 8.52 9.60
Azot N 7 14.0067 7.96 9.11
Kislorod O 8 15.9994 8.82 10.02
Neon Ne 10 20.179 7.92 9.22
Natrii Na 11 22.9898 6.25 7.61
Magnii Mg 12 24.305 7.42 8.81
Alyuminii Al 13 26.9815 6.39 7.78
Kremnii Si 14 28.086 7.52 8.97
Fosfor P 15 30.9738 5.52 7.01
Sera S 16 32.06 7.20 8.71
Hlor Cl 17 35.453 5.6 7.2
Argon Ag 18 39.948 6.8 8.4
Kal'cii Sa 20 40.08 6.30 7.90
Hrom Sg 24 51.996 5.85 7.57
Marganec Mn 25 54.9380 5.40 7.14
Zhelezo Fe 26 55.847 7.60 9.35
Nikel' Ni 28 58.71 6.30 8.07
Otnositel'noe soderzhanie po masse: Chislo nuklonov na yadro,
Vodorod X\( _{\textrm{H}} \)=0.73 \( \mu \)\( _{\textrm{n}} \)=1.26
Gelii X \( _{\textrm{He}} \)=0.25 Srednyaya atomnaya massa pri polnoi ionizacii
Prochie elementy \( \Sigma \)x\( _{\textrm{i}} \)=0.017 \( \mu \)=0.60

\( y_{ij} \) - stepen' \( j \)-kratnoi ionizacii \( j \)-go elementa, tak chto \( \sum _{j=0}^{i}y_{ij}=1 \),

\( m_{i}\approx A_{i}m_{u} \) - massa yadra atoma s nomerom \( i \) i atomnoi massoi \( A_{i}\geq 4 \)

\( m_{u}=1.66057\cdot 10^{-24} \) g - atomnaya edinica massy, ravnaya 1/12 massy izotopa \( ^{12}C \),

\( m_{e}=9.10953\cdot 10^{-28} \) g - massa elektrona1,


$$
%\begin{displaymath}n_{ij}=x_{i}\rho y_{ij}/m_{i} \mbox{~sm}^{-3} \end{displaymath}
n_{ij}=x_i \rho y_{ij}/m_i \mbox{\rm~cm}^{-3}
$$ (1.4)

- koncentraciya ionov elementa \( i \) v \( j \)-m sostoyanii ionizacii,

\( g_{ij} \) - statisticheskii ves iona \( i \)-go elementa v \( j \)-m sostoyanii ionizacii,


$$
%\begin{displaymath}n_{e}=\Sigma _{i}\Sigma _{j=1}^{i}jn_{ij} \mbox{~sm}^{-3} \end{displaymath}
n_{\rm e}=\sum_i \sum_{j=1}^i jn_{ij} \mbox{\rm~cm}^{-3}
$$ (1.5)

- koncentraciya elektronov v usloviyah elektroneitral'nosti,


$$
%\begin{displaymath}\mu =\left[ \Sigma _{i}\frac{m_{u}}{m_{i}}x_{i}\Sigma ^{i}_{j=0}(1+j)y_{ij}\right] ^{-1} \end{displaymath}
\mu=\left[\sum_i {m_{\rm u}\over m_i} x_i \sum_{j=0}^i(1+j)
y_{ij} \right]^{-1}
$$ (1.6)

- kolichestvo nuklonov na odnu chasticu gaza (srednyaya atomnaya massa).

V polnost'yu ionizovannom gaze, sostoyashem iz vodoroda, geliya i drugih elementov s \( A_{i}\approx 2i\gg 1 \), imeem


$$
%\begin{displaymath}
%\mu =\left[ 2x_{H}+\frac{3}{4}x_{He}+\frac{1}{2}x_{A}\right] ^{-1},~ %x_{A}=\Sigma _{i\geq 6}x_{i} ,~
%m_{He}\approx 4m_{u} ,~
%m_{H}\approx m_{u} \end{displaymath}
\eqalign{
&\mu\simeq\left[2x_{\rm H}+{3\over 4}x_{\rm He}+{1\over 2} x_A\right]^{-1}, \qquad
x_A=\sum\limits_{i\ge 6}x_i,
\cr
&m_{\rm He}\approx 4 m_{\rm u},
\quad m_{\rm H}\approx m_{\rm u}.
\cr}
$$ (1.7)

Energiya v (1.1) otschityvaetsya ot energii pokoya polnost'yu ionizovannyh ionov i elektronov. Stepeni ionizacii elementov v termodinamicheskom ravnovesii opredelyayutsya formuloi Saha [145]


$$
%\begin{displaymath}\frac{y_{i,j-1}}{y_{i,j}}=n_{e}\frac{g_{i,j-1}}{2g_{ij}}\left( \frac{2\pi \hbar ^{2}}{m_{e}kT}\right) ^{3/2}e^{^{I_{ij}/kT}}=n_{e}K(T) . \end{displaymath}
{y_{i,j-1}\over y_{ij}}=n_{\rm e}{g_{i,j-1}\over 2g_{ij}}\left( 2 \pi
\hbar^2\over m_{\rm e}kT \right)^{3/2} e^{I_{ij}/kT}=n_{\rm e} K(T)
$$ (1.8)

Zdes' \( I_{ij}=\epsilon _{i,j-1}-\epsilon _{ij} \) - energiya (potencial) ionizacii \( i \)-go elektrona, \( I_{i0}=0 \). Energii ionizacii naibolee obil'nyh elementov privedeny v tabl. 2. Dlya nahozhdeniya stepeni ionizacii elementov v smesi neobhodimo reshit' sistemu uravnenii (1.8) s uchetom (1.4), (1.5). Analiticheskoe re shenie poluchaetsya v sluchae odnokratnoi ionizacii odnogo (\( i \)-go) sorta atomov

$$
\eqalign{
&n_{\rm e}=n_{i1}={\rho\over m_i} y_{i1}, \qquad y_{i0}=1-y_{i1},
\cr
&{1-y_{i1}\over y_{i1}^2}={\rho\over m_i}{g_{i0}\over 2g_{i1}}
\left( 2 \pi \hbar^2\over m_{\rm e}kT \right)^{3/2} e^{I_{i1}/kT}=
F_{\rho,T},
\cr}
$$

otkuda


$$
%\begin{displaymath}y_{i1}=\left( \frac{1}{4F_{\rho ,T}^{2}}+\frac{1}{F_{\rho ,T}}\right) ^{1/2}-\frac{1}{2F_{\rho ,T}}.\end{displaymath}
y_{i1}=\left({1\over 4F_{\rho,T}^2}+{1\over F_{\rho,T}}\right)^{1/2}
-{1\over 2F_{\rho,T}}.
$$ (1.9)


Tablica 2. Potencialy ionizacii i polnye momenty vneshnih elektronnyh obolochek naibolee obil'nyh elementov [180].
Atomnyi nomer Element Potencialy ionizacii, eV Polnye momenty
1 H\( ^{-} \),H 0.747; 13.5985 0; 1/2
2 He 24.5876; 54.418 0; 1/2; 0
6 C 11.260; 24.284; 47.89; 64.49 0; 1/2; 0; 1/2
7 N 14.534; 29.602; 47.45; 77.47 3/2; 0; 1/2; 0
8 O 13.618; 35.118; 54.94; 77.41 2; 3/2; 0; 1/2
10 Ne 21.565; 40.964; 63.46; 97.12 0; 3/2; 2; 3/2
11 Na 5.1391; 47.287; 71.64; 98.92 1/2; 0; 3/2; 2
12 Mg 7.646; 15.035; 80.15; 109.2 0; 1/2; 0; 3/2
13 Al 5.9858; 18.828; 28.448; 120 1/2; 0; 1/2; 0
14 Si 8.152; 16.346; 33.493; 45.14 0; 1/2; 0; 1/2
15 P 10.49; 19.73; 30.18; 51.47 3/2; 0; 1/2; 0
16 S 10.36; 23.33; 34.83; 47.31 2; 3/2; 0; 1/2
17 Cl 12.968; 23.81; 39.61; 53.47 3/2; 2; 3/2; 0
18 Ar 15.760; 27.63; 40.74; 59.81 0; 3/2; 2; 3/2
20 Ca 6.113; 11.872; 50.91; 67.10 0; 1/2; 0; 3/2
24 Cr 6.766; 16.50; 30.96; 49 3; 5/2; 0; 3/2
25 Mn 7.4368; 15.640; 33.67; 51.2 5/2; 2; 5/2; 0
26 Fe 7.87; 16.18; 30.65; 54.8 4; 9/2 4; 5/2
28 Ni 7.63; 18.17; 35.2; 54.9 4; 5/2; 4; 9/2
1 eV = 11.604 K X\( _{0} \); X\( _{+} \); X\( _{++} \); X\( _{+++} \) X\( _{0} \); X\( _{+} \); X\( _{++} \); X\( _{+++} \)

Pri issledovanii zvezdnoi evolyucii chasto neobhodimo znat' znacheniya adiabaticheskih pokazatelei


$$ \gamma_1=\left(\partial\ln P\over \partial\ln\rho\right)_S, \quad \gamma_2=\left(\partial\ln T\over \partial\ln P\right)_S, \quad \gamma_3=\left(\partial\ln T\over \partial\ln\rho\right)_S,
$$

i teploemkostei


$$
%\begin{displaymath}
%c_{\upsilon }=T\left( \frac{\partial S}{\partial T}\right) _{\rho } , \quad
%c_{p}=\left( \frac{\partial S}{\partial T}\right) _{P}.
%\end{displaymath}
c_v=T\left(\partial S\over \partial T\right)_\rho,\quad
c_p=T\left(\partial S\over \partial T\right)_P.
$$

V usloviyah nepolnoi ionizacii vse velichiny rasschityvayutsya chislenno, dlya chego ih udobno vyrazit' cherez proizvodnye


$$
%\begin{displaymath}\left( \frac{\partial \ln P}{\partial \ln\rho }\right) _{T} ,~ \left( \frac{\partial \ln P}{\partial \ln T}\right) _{\rho },~
%\left( \frac{\partial S}{\partial \ln\rho }\right) _{T} ,~ \left( \frac{\partial S}{\partial \ln T}\right) _{\rho }=c_{\upsilon }. \end{displaymath}
\left(\partial\ln P\over \partial\ln\rho \right)_T,\quad
\left(\partial\ln P\over \partial\ln T \right)_\rho,\quad
\left(\partial S\over \partial\ln\rho\right)_T, \quad
\left(\partial S\over \partial\ln T\right)_\rho=c_v.
$$

Vospol'zuemsya izvestnymi svoistvami yakobianov


$$
%\begin{displaymath}\frac{\partial (u,\upsilon )}{\partial (x,y)}=\frac{\partial (u,\upsilon )}{\partial (t,s)}\frac{\partial (t,s)}{\partial (x,y)} ; \quad
%\frac{\partial (u,\upsilon )}{\partial (x,\upsilon )}=\left( \frac{\partial u}{\partial x}\right) _{\upsilon }. \end{displaymath}
{\partial (u,v)\over \partial (x,y)} =
{\partial (u,v)\over \partial (t,s)}{\partial (t,s)\over \partial (x,y)};\quad
{\partial (u,v)\over \partial (x,v)} = \left(\partial u\over
\partial x\right)_v,
$$ (1.10)

Poluchaem


$$
%\begin{displaymath}\gamma _{1}=\left( \frac{\partial \ln P}{\partial \ln\rho }\right) _{T}-\left( \frac{\partial \ln P}{\partial \ln T}\right) _{\rho }\left( \frac{\partial S}{\partial \ln\rho }\right) _{T}\left/\left( \frac{\partial S}{\partial \ln T}\right)\right. _{\rho } , \end{displaymath}
\gamma_1=\left(\partial\ln P\over \partial\ln\rho \right)_T-
\left(\partial\ln P\over \partial\ln T \right)_\rho \left(\partial S\over \partial\ln\rho\right)_T \bigg/
\left(\partial S\over \partial\ln T\right)_\rho,
$$ (1.11)


$$
%\begin{displaymath}\gamma _{2}=\left[ \left( \frac{\partial \ln P}{\partial \ln T}\right) _{\rho }-\left( \frac{\partial \ln P}{\partial \ln\rho }\right) _{T}\left( \frac{\partial S}{\partial \ln T}\right) _{\rho }\left/\left( \frac{\partial S}{\partial \ln\rho }\right)\right. _{T}\right] ^{-1}, \end{displaymath}
\gamma_2=\left[\left(\partial\ln P\over \partial\ln T\right)_\rho-
\left(\partial\ln P\over \partial\ln\rho \right)_T \left(\partial S\over \partial\ln T\right)_\rho \bigg/
\left(\partial S\over \partial\ln\rho\right)_T\right]^{-1},
$$ (1.12)


$$
%\begin{displaymath}\gamma _{3}=-\left( \frac{\partial S}{\partial \ln\rho }\right) _{T}\left/\left( \frac{\partial S}{\partial \ln T}\right)\right. _{\rho }, \end{displaymath}
\gamma_3= -\left(\partial S\over \partial\ln\rho\right)_T \bigg/
\left(\partial S\over \partial\ln T\right)_\rho,
$$ (1.13)


$$
%\begin{displaymath}c_{\upsilon }=(\partial S/\partial \ln T)_{\rho }, \end{displaymath}
c_v=\left(\partial S/\partial \ln T \right)_\rho,
$$ (1.14)


$$
%\begin{displaymath}c_{p}=c_{\upsilon }-\left( \frac{\partial S}{\partial \ln\rho }\right) _{T}\left( \frac{\partial \ln P}{\partial \ln T}\right) _{\rho }\left/\left( \frac{\partial \ln P}{\partial \ln\rho }\right)\right. _{T}, \end{displaymath}
c_p=c_v-\left(\partial S\over \partial\ln\rho\right)_T
\left(\partial\ln P\over \partial\ln T \right)_\rho \bigg/
\left(\partial \ln P\over \partial\ln\rho\right)_T,
$$ (1.15)


$$
%\begin{displaymath}c_{p}/c_{\upsilon }=\gamma \left/\left( \frac{\partial \ln P}{\partial \ln\rho }\right)\right. _{T}. \end{displaymath}
c_p/c_v=\gamma_1 \bigg/
\left(\partial \ln P\over \partial\ln\rho\right)_T.
$$ (1.16)

Proizvodnye ot entropii vyrazhayutsya cherez proizvodnye ot energii i davleniya iz pervogo zakona termodinamiki i usloviya polnoty differenciala svobodnoi energii \( F=E-TS \):


$$
%\begin{displaymath}
%\left( \frac{\partial S}{\partial \ln T}\right) _{\rho }=\frac{1}{T}\left( \frac{\partial E}{\partial \ln T}\right) _{\rho }, \quad
%\left( \frac{\partial S}{\partial \ln \rho }\right) _{T}=-\frac{1}{\rho T}\left( \frac{\partial P}{\partial \ln T}\right) _{T}. %\end{displaymath}
\left(\partial S\over \partial\ln T\right)_\rho=
{1\over T}\left(\partial E\over \partial\ln T\right)_\rho,\quad
\left(\partial S\over \partial\ln\rho \right)_T=
-{1\over\rho T}\left(\partial P\over \partial\ln T\right)_\rho.
$$ (1.17)

Esli stepeni ionizacii \( y_{ij} \) postoyanny, to iz (1.3)-(1.6) slededuet


$$
%\begin{displaymath}S=\frac{k}{\mu m_{u}}\ln \left( T^{3/2}/\rho \right) +\frac{4}{3}\frac{aT^{3}}{\rho }+const \end{displaymath}
S={k\over \mu m_{\rm u}}\ln(T^{3/2}/\rho)+{4\over 3}{aT^3\over\rho}
+{\rm const}
$$ (1.18)

i vse proizvodnye vychislyayutsya analiticheski:


$$
%\begin{displaymath}
%\hbox{%
%\begin{tabular}{ll}
%$\displaystyle{ \left( \frac{\partial \ln P}{\partial \ln \rho }\right) _{T}=\beta _{g}, }$ &
%$\displaystyle{ \left( \frac{\partial \ln P}{\partial \ln T}\right) _{\rho }=4-3\beta _{g}, }$ \\ %$\displaystyle{ \left( \frac{\partial S}{\partial \ln \rho }\right) _{T}=-\frac{P}{\rho T}\left( 4-3\beta _{g}\right), }$ &
%$\displaystyle{ \left( \frac{\partial S}{\partial \ln T}\right) _{\rho }=\frac{3}{2}\frac{P}{\rho T}\left( 8-7\beta _{g}\right). }$ \\
%\end{tabular}}
%\end{displaymath}
\eqalign{ %(1.19)
&\left(\partial \ln P\over \partial\ln\rho\right)_T=\beta_g, \quad
\left(\partial \ln P\over \partial\ln T\right)_\rho=4-3 \beta_g,
\cr
&\left(\partial S\over \partial\ln \rho\right)_T=-{P\over\rho T}
\left(4-3 \beta_g\right), \quad
\left(\partial S\over \partial\ln T\right)_\rho=
{3\over 2}{P\over\rho T}\left(8-7 \beta_g\right),
\cr}
$$ (1.19)

Zdes' \( \beta _{g}=P_{g}/P \)- otnoshenie gazovogo davleniya k polnomu. Vyrazheniya dlya adiabaticheskih pokazatelei i teploemkostei odnoatomnogo gaza s \( \mu =const \) i izlucheniya prinimayut vid [218]


$$
\eqalign{
&\gamma_1=\beta_g
+{2\over 3}{\left(4-3 \beta_g\right)^2\over 8-7 \beta_g}, \quad
\gamma_2=\left[4-3\beta_g+{3\over 2}\beta_g{8-7\beta_g\over 4-3\beta_g}
\right]^{-1},\cr
&\gamma_3={2\over 3}{4-3 \beta_g\over 8-7 \beta_g},
\cr
&c_v={3\over 2}{P\over\rho T}\left(8-7 \beta_g\right),
\cr
&c_p={3\over 2}{P\over\rho T}\left(8-7 \beta_g\right)
\left[1+{2\over 3}{\left(4-3 \beta_g\right)^2\over\beta_g
\left(8-7 \beta_g\right)}\right],
\cr
&{c_p\over c_v}=1+{2\over 3}{\left(4-3 \beta_g\right)^2\over\beta_g
\left(8-7 \beta_g\right)}=\gamma_1/\beta_g.
\cr}
$$ (1.20)

Sootnosheniya (1.18)-(1.20) shiroko primenyayutsya pri opisanii zvezd noi materii, tak kak osnovnaya chast' massy zvezd nahoditsya v sostoyanii polnoi ionizacii s \( \mu =const \). V obolochkah zvezd, gde temperatura men'she, veshestvo ionizovano ne polnost'yu i \( \mu =\mu \left( \rho ,T\right) \).

Zadacha. Vyvesti uravneniya dlya koncentracii elektronov v plazme, sostoyashei iz \( H^{0}, \) \( H^{+}, \)\( H^{-} \), \( He^{0}, \) \( He^{+}, \) \( He^{++} \), a takzhe atomov i odnokratno ionizovannyh ionov \( k \) drugih elementov.

Reshenie. Ispol'zuya formulu Saha (1.8) i tabl. 2, poluchaem dlya vodoroda


$$
\eqalign{
&y_{\rm H^0}={4\over n_{\rm e}}\left(m_{\rm e}kT \over 2\pi\hbar^2
\right)^{3/2}e^{-{0.747 \over T_{\rm e}}} y_{\rm H^-}\equiv
{y_{\rm H^-} \over n_{\rm e}}Q_{\rm H^0}, \quad g_{\rm H^0}=4,
\cr
&y_{\rm H^+}={1\over n_{\rm e}}\left(m_{\rm e}kT \over 2\pi\hbar^2
\right)^{3/2}e^{-{13.6 \over T_{\rm e}}} y_{\rm H^0}\equiv
{y_{\rm H^0} \over n_{\rm e}}Q_{\rm H^+}=
{y_{\rm H^-} \over n_{\rm e}^2}Q_{\rm H^0}Q_{\rm H^+}.
\cr}
$$ (1)


\begin{displaymath}y_{H^{+}}=\frac{1}{n_{e}}\left( \frac{m_{e}kT}{2\pi h^{2}}\right) ^{3/2}e^{-\frac{13.6}{T_{\mbox{e}}}}y_{H^{0}}\equiv \frac{y_{H^{0}}}{n_{e}}Q_{H^{+}}=\frac{y_{H^{-}}}{n_{e}^{2}}Q_{H^{0}}Q_{H^{+.}} \end{displaymath}

Ispol'zuya uslovie $$
%\( y_{H^{-}}+y_{H^{0}}+y_{H^{+}}=1 \)
y_{\rm H^-}+y_{\rm H^0}+y_{\rm H^+}=1
$$, imeem


$$
%\begin{displaymath}y_{H^{-}}=n_{e}^{2}\left( n_{e}^{2}+n_{e}Q_{H^{0}}+Q_{H^{0}}Q_{H^{+}}\right) ^{-1} \end{displaymath}
y_{\rm H^-}=n_{\rm e}^2\left(n_{\rm e}^2+n_{\rm e}Q_{\rm H^0}+
Q_{\rm H^0}Q_{\rm H^+}\right)^{-1}
$$ (2)

Analogichno dlya geliya poluchaem


$$
\eqalign{
&y_{\rm He^0}=n_{\rm e}^2\left(n_{\rm e}^2+n_{\rm e}Q_{\rm He^+}+
Q_{\rm He^+}Q_{\rm He^{++}}\right)^{-1},
\cr
&y_{\rm He^+}={y_{\rm He^0} \over n_{\rm e}}Q_{\rm He^+}, \quad
y_{\rm He^{++}}={y_{\rm He^0} \over n_{\rm e}^2}
Q_{\rm He^{++}}Q_{\rm He^+},
\cr}
$$ (3)

gde


$$
%\begin{displaymath}
%Q_{He^{+}}=4\left( \frac{m_{e}kT}{2\pi h^{2}}\right) ^{3/2}e^{-\frac{24.6}{T_{\mbox{e}}}}, \quad
%Q_{He^{++}}=\left( \frac{m_{e}kT}{2\pi h^{2}}\right) ^{3/2}e^{-\frac{54.4}{T_{\mbox{e}}}} %\end{displaymath}
Q_{\rm He^+}=4\left(m_{\rm e}kT \over 2\pi\hbar^2
\right)^{3/2}e^{-{24.6 \over T_{\rm e}}}, \quad
Q_{\rm He^{++}}=\left(m_{\rm e}kT \over 2\pi\hbar^2
\right)^{3/2}e^{-{54.4 \over T_{\rm e}}}
$$ (4)

i dlya tyazhelyh elementov


$$
%\begin{displaymath}
%y_{j^{+}}=\frac{Q_{j^{+}}}{n_{e}+Q_{j^{+}}} , \quad %Q_{j^{+}}=2\frac{g_{j^{+}}}{q_{j^{0}}}\left( \frac{m_{e}kT}{2\pi \hbar ^{2}}\right) ^{3/2}e^{-\frac{I_{j1}}{kT}} .
%\end{displaymath}
y_{j^+}={Q_{j^+}\over n_{\rm e}+ Q_{j^+}}, \quad
Q_{j^+}=2{g_{j^+} \over g_{j^0}}\left(m_{\rm e}kT \over 2\pi\hbar^2
\right)^{3/2}e^{-{I_{j1} \over kT}}.
$$ (5)

Zdes' \( T_{\mbox{e}} \) temperatura v elektronvol'tah. Ispol'zuya sootnoshenie (4) dlya kazhdogo elementa i uslovie elektroneitral'nosti (5)

$$
%\( n_{H^{+}}+n_{He^{+}}+2n_{He^{++}}+\sum _{j=1}^{k}n_{j^{+}}=n_{e}+n_{H^{-}} \)
n_{\rm H^+}+n_{\rm He^+}+2n_{\rm He^{++}}+\sum_{j=1}^kn_{j^+}=
n_{\rm e}+n_{\rm H^-}\,,
$$

poluchaem uravnenie dlya privedennoi elektronnoi koncentracii


$$
%\begin{displaymath}
%\hbox{
%\begin{tabular}{l}
%$\displaystyle{ x_{e}=\frac{m_{u}}{\rho }n_{e} , }$ %$\displaystyle{ x_{H}\frac{q_{_{^{H^{0}}}}q_{_{^{H^{+}}}}-x_{e}^{2}}{x^{2}_{e}+x_{e}q_{_{^{H^{0}}}}+q_{_{^{H^{0}}}}q_{_{^{j^{+}}}}}+\frac{x_{He}}{4}\frac{x_{e}q_{_{^{He^{+}}}}+2q_{_{^{He^{+}}}}q_{_{^{He^{++}}}}}{x_{e}^{2}+x_{e}q_{_{^{He^{+}}}}+q_{_{^{He^{+}}}}q_{_{^{He^{++}}}}}+ }$ %$\displaystyle{ \qquad\qquad + \Sigma _{j=0}^{k}\frac{m_{u}}{m_{j}}\frac{q_{_{^{j^{+}}}}}{x_{e}+q_{_{^{j^{+}}}}}=x_{e} . }$ %\end{tabular}}
%\end{displaymath}
\eqalign{
&x_{\rm e}= {m_{\rm u}\over \rho} n_{\rm e};
\cr
&x_{\rm H}{q_{\rm H^0}q_{\rm H^+}-x_{\rm e}^2 \over
x_{\rm e}^2+x_{\rm e}q_{\rm H^0}+q_{\rm H^0}q_{\rm H^+}}+
{x_{\rm He} \over 4}
{x_{\rm e}q_{\rm He^+}+2q_{\rm He^+}q_{\rm He^{++}} \over
x_{\rm e}^2+x_{\rm e}q_{\rm He^+}+q_{\rm He^+}q_{\rm He^{++}}}
\cr
&\qquad+\sum_{j=0}^k x_j{m_{\rm u} \over m_j}
{q_{j^+} \over x_{\rm e}+q_{j^+}} = x_{\rm e}.
\cr}
$$ (6)

Zdes' \( q_{i}=m_{u}Q_{i}/\rho \). Vse velichiny v (6) bezrazmerny i blizki k edinice, chto udobno dlya chislennogo resheniya.

Posle nahozhdeniya stepenei ionizacii v zavisimosti ot \( \rho \) i \( T \), mozhno vychislit' termodinamicheskie funkcii i ih proizvodnye. Na ris. 1 v kachestve primera takogo rascheta privedena zavisimost' \( \gamma _{3}(\rho ,T) \) dlya smesi s sostavom \( x_{H}=0.75 \), \( x_{He}=0.22 \)h i solnechnym sootnosheniem mezhdu drugimi elementami (tabl. 1). Dva minimuma na krivyh \( \gamma _{3}\left\vert _{\rho }(T)\right. \) sootvetstvuyut oblastyam ionizacii vodoroda i pervoi ionizacii geliya. Pri maloi plotnosti \( \rho =10^{-12}\mbox{~g}\cdot \mbox{sm}^{-3} \) vtoroi minimum popadaet v oblast' preobladaniya davleniya izlucheniya i potomu ne zameten.

Ris. 1. Zavisimosti $\gamma(T)$ pri $\rho$ = const, ukazannyh na krivyh, dlya normal'nogo sostava (tabl. 1) v oblasti, gde proishodit ionizaciya vodoroda i geliya



<< Predislovie | Oglavlenie | 2. Relyativistskii gaz s vyrozhdeniem >>

Publikacii s klyuchevymi slovami: Evolyuciya zvezd - fizicheskie processy
Publikacii so slovami: Evolyuciya zvezd - fizicheskie processy
Sm. takzhe:
Vse publikacii na tu zhe temu >>

Ocenka: 2.6 [golosov: 87]
 
O reitinge
Versiya dlya pechati Raspechatat'

Astrometriya - Astronomicheskie instrumenty - Astronomicheskoe obrazovanie - Astrofizika - Istoriya astronomii - Kosmonavtika, issledovanie kosmosa - Lyubitel'skaya astronomiya - Planety i Solnechnaya sistema - Solnce


Astronet | Nauchnaya set' | GAISh MGU | Poisk po MGU | O proekte | Avtoram

Kommentarii, voprosy? Pishite: info@astronet.ru ili syuda

Rambler's Top100 Yandeks citirovaniya