
2. Relyativistskii gaz s uchetom vyrozhdeniya
V central'nyh oblastyah zvezd, nahodyashihsya na pozdnih stadiyah evolyucii, a takzhe pri vzryvah sverhnovyh kineticheskaya energiya elektronov mozhet stat' poryadka ih energii pokoya, t.e. skorosti ih priblizhayutsya k skorosti sveta:
![]() |
(2.1) |
Pri vychislenii termodinamicheskih funkcii neobhodimo togda ispol'zovat'
polnye relyativistskie vyrazheniya dlya energii i impul'sa elektronov.
S drugoi storony, plotnosti mogut vyrasti nastol'ko, chto srednee chislo
chastic v yacheike fazovogo prostranstva priblizhaetsya k edinice. Pri
etom neobhodimo uchityvat' princip Pauli dlya elektronov (spin = 1/2),
chislo kotoryh v yacheike fazovogo prostranstva ravno libo nulyu, libo
edinice. Srednee chislo elektronov s energiei v yacheike
zadaetsya funkciei Fermi [145]
![]() |
(2.2) |
gde - himicheskii potencial elektronov,
![]() |
(2.3) |
Termodinamicheskie funkcii nahodyatsya s pomosh'yu integralov po impul'snomu
prostranstvu (s uchetom statisticheskogo vesa ) [145]:
![]() |
(2.4) |
![]() |
(2.5) |
![]() |
(2.6) |
![]() |
(2.7) |
Posle preobrazovaniya integralov i vvedeniya bezrazmernyh velichin
![]() |
(2.8) |
poluchim
![]() |
(2.9) |
gde
![]() |
(2.10) |
Kogda
, v termodinamicheskom ravnovesii
neobhodimo uchityvat' pozitrony. Annigilyaciya pary
privodit k rozhdeniyu fotonov, himicheskii potencial kotoryh v ravnovesii
raven nulyu,
. Iz usloviya ravnovesiya annigilyacii
sleduet ravenstvo
![]() |
(2.11) |
Termodinamicheskie funkcii dlya pozitronov poluchayutsya iz (2.9), gde
sleduet zamenit' na
i ispol'zovat' integraly
,
,
,
, poluchaemye
iz
v (2.10) zamenoi
na
.
Nuklony i yadra chasto mozhno schitat' nevyrozhdennymi i nerelyativistskimi,
poetomu dlya nih, vmeste s izlucheniem, imeem
![]() |
(2.12) |
![]() |
(2.13) |
![]() |
(2.14) |
Zdes' rassmotreno polnost'yu ionizovannoe veshestvo. Esli yadernye reakcii
ne idut i vesovye doli elementov neizmenny (), to
analogichno (1.18) imeem
![]() |
(2.15) |
V (2.12)-(2.15) ispol'zovana velichina
![]() |
(2.16) |



![]() |
(2.17) |
Vyrazhenie (2.17) s uchetom (2.9), (2.10) sluzhit dlya nahozhdeniya zavisimosti
. Dlya sluchaya polnoi ionizacii
pri
,
imeem iz (1.6), (2.16) i (2.17)
![]() |
(2.18) |
V dannom paragrafe otschet energii vedetsya ot energii pokoya yader, kotoraya v otsutstvii yadernyh prevrashenii ostaetsya neizmennoi.
Rassmotrim predel'nye sluchai formul (2.9).
a) Sil'noe vyrozhdenie. Pri nulevoi temperature elektrony
zapolnyayut fazovoe prostranstvo vplot' do granichnogo impul'sa Fermi
. Plotnost' elektronov ravna udvoennomu (za schet statisticheskogo
vesa) chislu yacheek v sfericheskoi oblasti fazovogo prostranstva radiusom
:
![]() |
(2.19) |
S uchetom (2.17) poluchaem v otsutstvie pozitronov
![]() |
(2.20) |
Kineticheskaya energiya elektrona na granice fazovoi oblasti nazyvaetsya energiei Fermi:
![]() |
(2.21) |
Uchtya, chto pri
i
pri
, poluchaem iz (2.5), (2.6)
![]() |
(2.22) |
![]() |
(2.23) |
Temperaturnye popravki pri sil'nom vyrozhdenii nahodyatsya iz razlozheniya obshih formul s pomosh'yu sootnosheniya [145]
![]() |
(2.24) |




![]() |
(2.25) |
![]() |
(2.26) |
![]() |
(2.27) |
![]() |
(2.28) |
Zdes'
, parametr
razlozheniya
, a funkcii
posle svedeniya integralov (2.10) k vidu (2.24) ravny
,
,
.
Naidem yavnuyu zavisimost'
,
i
ot
i
, ostavlyaya tol'ko chleny ~
.
Ispol'zuya opredelenie
iz (2.20), (2.21) i sootnoshenie (2.25),
poluchaem svyaz' mezhdu
,
i
:
![]() |
(2.29) |
Uchtya malost'
, poluchim

Posle podstanovki v (2.23), (2.25)-(2.28) imeem


i yavnye vyrazheniya termodinamicheskih funkcii
![]() |
(2.30) |
V predel'nyh sluchayah funkcii i
ravny
![]() |
(2.31) |

Uchtya (2.31), v nerelyativistskom predele poluchaem iz
(2.30)
![]() |
(2.32) |
V ul'trarelyativistskom predele sootvetstvenno imeem
![]() |
(2.33) |
b) Ochen' malaya plotnost' veshestva. Plotnost' veshestva mozhet
byt' nastol'ko maloi, chto koncentraciya par prevysit koncentraciyu ishodnyh
elektronov. V etom sluchae malym parametrom yavlyaetsya velichina ;
pri
imeet mesto
. Razlagaya (2.10)
v ryad po
, poluchim, ispol'zuya integrirovanie po chastyam,
![]() |
(2.34) |
![]() |
(2.35) |
Pri integraly (2.35) vyrazhayutsya [145] cherez
-funkciyu
i
-funkciyu Rimana s pomosh'yu sootnosheniya
![]() |
(2.36) |

Uchityvaya dlya celyh znacheniya
iz [145]
i
, poluchaem
![]() |
(2.37) |
S uchetom (2.34)-(2.37) i opredeleniya v (2.29), termodinamicheskie
funkcii s uchetom (2.9), (2.17) primut vid
![]() |
(2.38) |
![]() |
(2.39) |
V sluchae ul'trarelyativistskih par dlya (2.39) imeyut
mesto asimptoticheskie predstavleniya [166]
![]() |
(2.40) |
Iz (2.38)-(2.40) poluchaem termodinamicheskie funkcii vblizi ul'trarelyativistskih
par v gaze maloi plotnosti
![]() |
(2.41) |
V nerelyativistskom predele , ostavlyaya dva chlena
pri razlozhenii znamenatelya v (2.35), imeem [93]
![]() |
(2.42) |


![]() |
(2.43) |
V tabl. 3 privedeny znacheniya funkcii ,
dlya
, poluchennye chislennym integrirovaniem
v [167].
v) Slaboe vyrozhdenie.
Slaboe vyrozhdenie sootvetstvuet v (2.2). Togda v
integralah (2.10) mozhno provesti razlozhenie v ryad, vospol'zovavshis'
bol'shim znacheniem eksponenty v znamenatele. Ostavlyaya dva pervyh chlena
razlozheniya, poluchaem [218, 166, 363, 93]
![]() |
(2.44) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
0.00 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
0.50 | 9.4989 (-1) | 9.5476 (-1) | 9.6299 (-1) | 9.8119 (-1) | 9.8342 (-1) | 9.8702 (-1) |
1.00 | 8.2749 (-1) | 8.4020 (-1) | 8.6278 (-1) | 9.2303 (-1) | 9.3130 (-1) | 9.4529 (-1) |
1.50 | 6.7622 (-1) | 6.9345 (-1) | 7.2532 (-1) | 8.3028 (-1) | 8.4519 (-1) | 8.7168 (-1) |
2.00 | 5.2709 (-1) | 5.4480 (-1) | 5.7846 (-1) | 7.1580 (-1) | 7.3497 (-1) | 7.7039 (-1) |
2.50 | 3.9653 (-1) | 4.1217 (-1) | 4.4246 (-1) | 5.9438 (-1) | 6.1464 (-1) | 6.5311 (-1) |
3.00 | 2.9030 (-1) | 3.0290 (-1) | 3.2762 (-1) | 4.7800 (-1) | 4.9689 (-1) | 5.3345 (-1) |
3.50 | 2.0806 (-1) | 2.1764 (-1) | 2.3656 (-1) | 3.7418 (-1) | 3.9040 (-1) | 4.2216 (-1) |
4.00 | 1.4664 (-1) | 1.5360 (-1) | 1.6748 (-1) | 2.8635 (-1) | 2.9949 (-1) | 3.2544 (-1) |
4.50 | 1.0189 (-1) | 1.0685 (-1) | 1.1675 (-1) | 2.1497 (-1) | 2.2520 (-1) | 2.4549 (-1) |
5.00 | 7.0003 (-2) | 7.3461 (-2) | 8.0361 (-2) | 1.5877 (-1) | 1.6650(-1) | 1.8188 (-1) |
5.50 | 4.7634 (-2) | 5.0006 (-2) | 5.4746 (-2) | 1.1563 (-1) | 1.2133 (-1) | 1.3271 (-1) |
6.00 | 3.2147 (-2) | 3.3756 (-2) | 3.6973 (-2) | 8.3190 (-2) | 8.7329 (-2) | 9.5597 (-2) |
7.00 | 1.4345 (-2) | 1.5066 (-2) | 1.6510 (-2) | 4.1752 (-2) | 4.3848 (-2) | 4.8039 (-2) |
8.00 | 6.2613 (-3) | 6.5769 (-3) | 7.2085 (-3) | 2.0259 (-2) | 2.1280 (-2) | 2.3321 (-2) |
9.00 | 2.6856 (-3) | 2.8211 (-3) | 3.0922 (-3) | 9.5667 (-3) | 1.0049 (-2) | 1.1014 (-2) |
10.0 | 1.1356 (-3) | 1.1929 (-3) | 1.3076 (-3) | 4.4175 (-3) | 4.6404 (-3) | 5.0864 (-3) |
V dannoi i posleduyushih tablicah v skobkah ukazan poryadok velichiny |
Iz (2.17) imeem s nuzhnoi tochnost'yu, uchtya (2.44) i velichinu
iz (2.29),2
![]() |
(2.45) |
Pri vyvode (2.45) ispol'zovalas' malost' chlenov, soderzhashih , kotorye uchityvayut slaboe vyrozhdenie. S pomosh'yu (2.44), (2.45) poluchaem iz (2.9)
![]() |
(2.46) |
Formuly (2.46) spravedlivy dlya slabo vyrozhdennogo gaza proizvol'noi
plotnosti, v tom chisle ochen' maloi, kogda chislo rozhdayushihsya par mnogo
bol'she ishodnogo chisla elektronov i
.
Neobhodimo takzhe, chtoby gaz ne byl relyativistskim, tak kak pri
rozhdayushiesya pary zapolnyayut fazovoe prostranstvo dazhe pri ochen' maloi
plotnosti. Takim obrazom, dlya primenimosti (2.46) trebuetsya vypolnenie
usloviya
, kogda spravedlivo razlozhenie (2.43)3.
Pri iz (2.46) i (2.43), ostavlyaya dva chlena razlozheniya
po
, poluchaem termodinamicheskie funkcii ideal'nogo
gaza s popravkami na vyrozhdenie, relyativizm i rozhdenie par (sm. takzhe
[166])
![]() |
(2.47) |
Velichina v (2.47) vklyuchaet energiyu pokoya rozhdayushihsya
par i ih kineticheskuyu energiyu bez relyativistskih popravok, a v
- uchteny relyativistskie popravki k davleniyu par. V predele ochen' maloi
plotnosti
, ostavlyaya dva chlena razlozheniya po
,
iz (2.46) poluchayutsya formuly, sovpadayushie s nerelyativistskim predelom
formul (2.38) pri uchete (2.42).
g) Nerelyativistskii gaz. V etom sluchae
i vkladom pozitronov mozhno prenebrech'. Formuly (2.9) i (2.10) pri
etom svodyatsya k vidu
![]() |
(2.48) |

![]() |
(2.49) |
V nerelyativistskom predele kineticheskaya energiya elektronov otdelyaetsya ot energii pokoya.
Esli
, to
i vyrozhdenie
nesushestvenno. V etom predele poluchaem
![]() |
(2.50) |
Pervye chleny v integralah (2.50) privodyat k termodinamicheskim funkciyam
obychnogo gaza (sm. 1). S uchetom popravok iz pervogo sootnosheniya
(2.48) i (2.49) imeem
![$$
\eqalign{ e^{\beta-\alpha}&={\rho\over \muzmu}\pi^{3/2}\sqrt{2}\left(\hbar^2\over m_{\mathrm{e}} kT\right)^{3/2} \cr &\qquad\times\left[1+{\rho\over \muzmu}{\pi^{3/2}\over 2}\left( \hbar^2\over m_{\mathrm{e}} kT\right)^{3/2}\right] \cr &=\sqrt{{2\over \pi}}{\alpha^{3/2}y^3\over 3}\left(1+\ayspi6\right)\,, \cr
}
$$](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula802.gif)
chto privodit k termodinamicheskim funkciyam, sleduyushim iz (2.47), esli v nih prenebrech' popravkami na relyativizm (



![]() |
(2.51) |
Opredelyaya iz pervogo sootnosheniya (2.48)
![]() |
(2.52) |










d) Ul'trarelyativistskii gaz. Kogda kineticheskaya energiya elektronov
mnogo bol'she ih energii pokoya, velichinoi v integralah
(2.10) mozhno prenebrech', chto, s uchetom opredeleniya (2.49) pozvolit
zapisat' ih v vide
![]() |
(2.53) |
V ul'trarelyativistskom ravnovesnom gaze vsegda imeet mesto
i vyrozhdenie ne mozhet byt' malym vvidu intensivnogo rozhdeniya par.
Integraly Fermi celogo indeksa obladayut svoistvami, pozvolyayushimi vyrazit'
termodinamicheskie funkcii ul'trarelyativistskogo gaza v vide polinomov
po i
[166]. Iz (2.49) legko pokazat', chto4
![]() |
(2.54) |
![]() |
(2.55) |


V itoge poluchaem znacheniya termodinamicheskih funkcii dlya

![]() |
(2.56) |
V predele sil'nogo vyrozhdeniya
vklad pozitronov
prenebrezhimo mal, i iz pervogo sootnosheniya (2.56) i (2.29) imeem
![$$
%\begin{displaymath}
%\beta =\left( \frac{3\pi ^{2}\rho }{\mu _{Z}m_{u}}\right) ^{1/3}\frac{\hbar c}{kT}\left[ 1-\frac{\pi ^{2}}{3}\left( \frac{\mu _{Z}m_{u}}{3\pi ^{2}\rho }\right) ^{2/3}\left( \frac{kT}{\hbar c}\right) ^{2}\right] =\alpha y\left( 1-\frac{\pi ^{2}}{3\alpha ^{2}y^{2}}\right) . %\end{displaymath}
\eqalign{ \beta&=\left(3\pi^2\rho\over \muzmu\right)^{1/3}{\hbar c\over kT} \left[1-{\pi^2\over 3}\left(\muzmu\over 3\pi^2\rho\right)^{2/3} \left(kT\over \hbar c\right)^2\right] \cr &=\alpha y\left(1-\piay{}232{}2\right). \cr
}
$$](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula809.gif)
Eto privodit k termodinamicheskim funkciyam (2.33) bez chlenov ,
zadayushih otkloneniya ot ul'trarelyativizma. V ul'trarelyativistskom gaze
maloi plotnosti pri
imeem
![$$
%\begin{displaymath}
%\beta =\frac{3\rho }{\mu _{Z}m_{u}}\left( \frac{\hbar c}{kT}\right) ^{3}\left[ 1-\frac{1}{\pi ^{6}}\left( \frac{3\pi ^{2}\rho }{\mu _{Z}m_{u}}\right) ^{2}\left( \frac{\hbar c}{kT}\right) ^{6}\right] =\frac{y^{3}\alpha ^{3}}{\pi ^{2}}\left( 1-\frac{y^{6}\alpha ^{6}}{\pi ^{6}}\right) ,
%\end{displaymath}
\eqalign{ \beta&={3\rho\over \muzmu}\left({\hbar c\over kT}\right)^3 \left[1-{1\over \pi^6}\left(3\pi^2\rho\over \muzmu\right)^2 \left(\hbar c\over kT \right)^6\right] \cr &={\ya3\over \pi^2}\left(1-{\ya6\over \pi^6}\right) \cr
}
$$](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula810.gif)
chto privodit k termodinamicheskim funkciyam, sleduyushim iz (2.41) bez ucheta otklonenii ot ul'trarelyativizma






![]() |
Ris. 2.
Oblasti primenimosti priblizhennyh asimptoticheskih formul
na ploskosti ![]() ![]() A) levee linii ayb primenimo priblizhenie vyrozhdennogo gaza s popravkami (2.30), B) pravee linii czd - priblizhenie maloi plotnosti (2.38), C) vnutri oblasti oefg - priblizhenie pochti nevyrozhdennogo pochti nerelyativistskogo gaza (2.46), D) ohlm - oblast' primenimosti priblizheniya nerelyativistskogo gaza (2.48), E) pravee i vyshe lomanoi npr primenimo priblizhenie ul'trarelyativistskogo gaza (2.56). V sleduyushih oblastyah primenimy razlichnye priblizheniya: 1) nqby - priblizheniya A i E, 2) pravee lomanoi rzd - priblizheniya V i E, 3) cxg - priblizheniya V i S, 4) oetlm - priblizheniya S i D, 5) ahs - priblizheniya A i D. Zashtrihovana oblast', gde neobhodim chislennyi raschet integralov, vhodyashih v termodinamicheskie funkcii, naprimer, metodom Gaussa |
Korni ![]() ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
0.26356 | 0.61703 | 1.0311 | 1.4906 | 1.9859 |
![]() |
1.4134 | 2.1130 | 2.8372 | 3.5813 | 4.3417 |
![]() |
3.5964 | 4.6108 | 5.6203 | 6.6270 | 7.6320 |
![]() |
7.0858 | 8.3991 | 9.6829 | 10.944 | 12.188 |
![]() |
12.641 | 14.260 | 15.828 | 17.357 | 18.852 |
![]() |
0.52176 | 0.34801 | 0.52092 | 1.2510 | 4.1856 |
![]() |
0.39867 | 0.50228 | 1.0667 | 3.2386 | 12.877 |
![]() |
0.075942 | 0.14092 | 0.38355 | 1.3902 | 6.3260 |
![]() |
3.6118(-3) | 8.7199(-3) | 0.028564 | 0.11904 | 0.60475 |
![]() |
2.3370 (-5) | 6.8973 (-5) | 2.6271 (-4) | 1.2328(-3) | 6.8976 (-3) |
e) Analiz obshego sluchaya. Pri otsutstvii malyh parametrov
dlya rascheta termodinamicheskih funkcii nuzhno vychislyat' integraly (2.10)
chislenno. Ves'ma effektivnym yavlyaetsya metod, analogichnyi metodu Gaussa
[137], i ispol'zovannyi dlya etih celei v rabote [46]. Podyntegral'nye
vyrazheniya v (2.10) predstavlyayutsya v vide
, gde
funkciya
ogranichena na lyubom konechnom intervale i horosho
approksimiruetsya kakim-nibud' polinomom stepeni
na
intervale
pri dostatochno bol'shom
. Vychisleniya
provodyatsya po sleduyushei kvadraturnoi formule:
![]() |
(2.57) |




Formula (2.57) yavlyaetsya tochnoi, esli













Vyrazheniya dlya adiabaticheskogo pokazatelya i teploemkostei
v obshem sluchae pri postoyannom yadernom sostave polucheny v [46]
![]() |
(2.58) |
![]() |
(2.59) |
Bezrazmernyi himicheskii potencial vdol' izentropy udovletvoryaet
uravneniyu
![]() |
(2.60) |





![]() |
Ris. 3.
Zavisimost' pokazatelya adiabaty ![]() ![]() |
![]() |
Ris. 4.
Zavisimost' teploemkosti pri postoyannom ob'eme ![]() ![]() |
Ris. 5.
Zavisimost' teploemkosti pri postoyannom ob'eme ![]() ![]() |
Zadacha. Naiti relyativistskie popravki k adiabaticheskomu pokazatelyu
v ideal'nom gaze.
Otvet.
.
Pri etom ispol'zovany formuly (1.11), (2.13), (2.15), (2.18) i (2.47),
gde opusheny popravki na vyrozhdenie i rozhdenie par
i
.
<< 1. Ideal'nyi gaz s | Oglavlenie | 3. Uravnenie sostoyaniya pri ... >>
Publikacii s klyuchevymi slovami:
Evolyuciya zvezd - fizicheskie processy
Publikacii so slovami: Evolyuciya zvezd - fizicheskie processy | |
Sm. takzhe:
Vse publikacii na tu zhe temu >> |