3. Uravnenie sostoyaniya pri nalichii yadernogo ravnovesiya i processov slabogo vzaimodeistviya
Kogda temperatura veshestva dostigaet neskol'kih milliardov kel'vinov,
harakternye vremena yadernyh reakcii
stanovyatsya men'she
vseh makroskopicheskih vremen i ustanavlivaetsya ravnovesie otnositel'no
yadernogo sostava. V usloviyah yadernogo ravnovesiya koncentracii yader
nahodyatsya iz sootnosheniya mezhdu himicheskimi potencialami yader
,
neitronov
i protonov
, analogichno usloviyu
himicheskogo ravnovesiya
|
|
(3.1) |
![]() |
(3.2) |
![]() |
(3.3) |
V tabl. 5 privedeny spiny
![]() |
(3.4) |
| Atomnyi nomer | Element (izotop) | Energiya svyazi |
Spin yadra I |
| 1 | 0.2225 | 1/2, 1 | |
| 2 | 7718, 28297 | 1/2, 0 | |
| 6 | 92165, 97112 | 0, 1/2 | |
| 7 | 104663, 115496 | 1, 1/2 | |
| 8 | 127624, 131766, 139813 | 0, 5/2, 0 | |
| 10 | 160651, 167412, 177778 | 0, 3/2, 0 | |
| 11 | 186570 | 3/2 | |
| 12 | 198262, 205594, 216688 | 0, 5/2, 0 | |
| 13 | 224959 | 5/2 | |
| 14 | 236544, 245018, 255627 | 0, 1/2, 0 | |
| 15 | 262925 | 1/2 | |
| 16 | 271789, 280432, 291847 | 0, 3/2, 0 | |
| 17 | 298220, 317112 | 3/2, 3/2 | |
| 18 | 306727, 327354, 343822 | 0, 0, 0 | |
| 20 | 342063, 361900, 369832 | 0, 0, 7/2 | |
| 380969, 398787, 416014 | 0, 0, 0 | ||
| 24 | 435061, 456364, 464304, 474024 | 0, 0, 3/2, 0 | |
| 25 | 482091 | 5/2 | |
| 26 | 471779, 492280, 499926, 509969 | 0, 0, 1/2, 0 | |
| 28 | 506484, 526871, 534691 | 0, 0, 3/2 | |
| 545288, 561788 | 0, 0 | ||
|
|
|||
|
|
|||
Vzaimoprevrasheniya protonov i neitronov, kak svobodnyh, tak i svyazannyh
v yadrah, proishodyat v reakciyah slabogo vzaimodeistviya (sm. gl. 5).
Harakternoe vremya slabyh processov
pri vysokoi temperature
znachitel'no bol'she yadernogo
i mozhet byt' poryadka mikroskopicheskogo,
gidrodinamicheskogo ili teplovogo. Neitrino, voznikayushie pri slabyh
vzaimodeistviyah, svobodno uletayut iz zvezd. V etih usloviyah termodinamicheskoe
ravnovesie otnositel'no reakcii slabogo vzaimodeistviya otsutstvuet.
Isklyuchenie sostavlyayut goryachie neitronnye zvezdy, kotorye neproznachny
dlya neitrino s energiei
. Termodinamicheskie
funkcii ravnovesnogo neitrinnogo gaza
,
-gaza
s
5 analogichny elektronnym (2.56), gde
,
a velichiny
,
,
v dva raza men'she, chem
,
i
za schet statisticheskogo vesa.
V levoi chasti pervogo sootnosheniya (2.56), sluzhashego dlya nahozhdeniya
,
vmesto
dolzhna stoyat' velichina, svyazannaya s koncentraciei leptonnogo zaryada
.
Posle takih zamen vse formuly p.d 2 primenimy dlya ravnovesnogo neitrinnogo
gaza, a svyaz' mezhdu
i
opredelyaetsya sootnosheniyami
mezhdu himicheskimi potencialami
|
|
(3.5) |
V usloviyah svobodnogo uleta neitrino strogoe nahozhdenie svyazi
i
sostoit v reshenii uravnenii kinetiki beta-processov
![]() |
(3.6) |
![]() |
| Ris. 6.
Izentropy veshestva na ploskosti |
Esli v techenie vremeni
velichiny
i
v zvezde menyayutsya slabo, to dostigaetsya kineticheskoe
ravnovesie po beta-processam s
v (3.6). V etom
sluchae sootnosheniya (3.6) odnoznachno opredelyayut sostav veshestva [117-119,
224]. Dlya priblizhennogo opredeleniya sostava v usloviyah svobodnogo
uleta neitrino inogda ispol'zuetsya sootnoshenie (3.5) s
.
Raschety v etom priblizhenii sdelany v [114]. V yadernom ravnovesii
uchityvalis' yadra zheleza
, vklyuchaya sem' pervyh vozbuzhdennyh
urovnei,
,
i
. Rost temperatury vedet
snachala k rasshepleniyu yader zheleza na
i nuklony, a zatem
k chisto nuklonnomu sostavu. Pri bol'shoi plotnosti osnovnuyu chast' svobodnyh
nuklonov sostavlyayut neitrony. Na ris. 6 iz [46] privedeny izentropy
veshestva na ploskosti
,
i ukazany oblasti s
,
neobhodimye dlya analiza ustoichivosti (sm. gl.12). V oblasti yadernogo
ravnovesiya ispol'zovalis' rezul'taty [114].
<< 2. Relyativistskii gaz s ... | Oglavlenie | 4. Veshestvo pri bol'shih ... >>
|
Publikacii s klyuchevymi slovami:
Evolyuciya zvezd - fizicheskie processy
Publikacii so slovami: Evolyuciya zvezd - fizicheskie processy | |
Sm. takzhe:
Vse publikacii na tu zhe temu >> | |
![$$ \mu_{A,Z}=-kT\ln\left[\left(\AZ{m}kT\over 2\pi\hbar^2\right)^{3/2} {\AZ{g}\over \AZ{n}}\right]\AZ{m}c^2.
$$](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula822.gif)
![$$
\eqalign{ \AZ{n}&=\left(\pih\over kT\right)^{{3\over 2}(A-1)} \left(\AZ{m}\over {m_{\mathrm{p}}}^Z {m_{\mathrm{n}}}^{A-Z}\right)^{3/2} {\AZ{g}\over {g_{\mathrm{p}}}^Z {g_{\mathrm{n}}}^{A-Z}} \cr \noalign{\medskip} &\qquad\times\exp\left\{{[Zm_{\mathrm{p}}+(A-Z)m_{\mathrm{n}}-\AZ m]c^2\over kT}\right\} {n_{\mathrm{p}}}^Z {n_{\mathrm{n}}}^{A-Z}. \cr
}
$$](https://images.astronet.ru/pubd/2006/01/25/0001211125/tex/formula823.gif)


