Rambler's Top100Astronet    
  po tekstam   po klyuchevym slovam   v glossarii   po saitam   perevod   po katalogu
 

Na pervuyu stranicu << 2. Relyativistskii gaz s ... | Oglavlenie | 4. Veshestvo pri bol'shih ... >>

3. Uravnenie sostoyaniya pri nalichii yadernogo ravnovesiya i processov slabogo vzaimodeistviya

Kogda temperatura veshestva dostigaet neskol'kih milliardov kel'vinov, harakternye vremena yadernyh reakcii \( t_{n} \) stanovyatsya men'she vseh makroskopicheskih vremen i ustanavlivaetsya ravnovesie otnositel'no yadernogo sostava. V usloviyah yadernogo ravnovesiya koncentracii yader nahodyatsya iz sootnosheniya mezhdu himicheskimi potencialami yader \( \mu _{A,Z} \), neitronov \( \mu _{n} \) i protonov \( \mu _{p} \), analogichno usloviyu himicheskogo ravnovesiya

$$ \mu_{A,Z}=Z\mu_{\mathrm{n}}+(A-Z)\mu_{\mathrm{n}}.
$$ (3.1)

Dlya nerelyativistskih i nevyrozhdennyh yader imeem [145]
$$ \mu_{A,Z}=-kT\ln\left[\left(\AZ{m}kT\over 2\pi\hbar^2\right)^{3/2} {\AZ{g}\over \AZ{n}}\right]\AZ{m}c^2.
$$ (3.2)

Ravnovesnaya koncentraciya yader iz (3.1), (3.2) imeet vid
$$
\eqalign{ \AZ{n}&=\left(\pih\over kT\right)^{{3\over 2}(A-1)} \left(\AZ{m}\over {m_{\mathrm{p}}}^Z {m_{\mathrm{n}}}^{A-Z}\right)^{3/2} {\AZ{g}\over {g_{\mathrm{p}}}^Z {g_{\mathrm{n}}}^{A-Z}} \cr \noalign{\medskip} &\qquad\times\exp\left\{{[Zm_{\mathrm{p}}+(A-Z)m_{\mathrm{n}}-\AZ m]c^2\over kT}\right\} {n_{\mathrm{p}}}^Z {n_{\mathrm{n}}}^{A-Z}. \cr
}
$$ (3.3)

V predeksponente dostatochno polozhit' \( m_{n}=m_{p}=m_{u} \), \( m_{A,Z}=Am_{u} \), a chislitel' v eksponente est' energiya svyazi yadra \( B_{A,Z} \). Uchtya takzhe \( g_{p}=g_{n}=2 \), poluchim

$$ \AZ n=\left(\pih\over m_{\mathrm{p}} kT\right)^{{3\over 2}(A-1)} {A^{3/2}\over 2^A}\AZ g e^{{\AZ B\over kT}} {n_{\mathrm{p}}}^Z {n_{\mathrm{n}}}^{A-Z}.
$$

V tabl. 5 privedeny spiny \( I \), energii svyazi \( B \) naibolee ustoichivyh yader, \( g_{A,Z}=2I_{A,Z}+1 \). Blagodarya eksponencial'no bystroi zavisimosti skorosti yadernyh reakcii ot temperatury (sm. gl. 4), perehod ot zastyvshego yadernogo sostava k yadernomu ravnovesiyu zanimaet uzkuyu zonu temperatur, gde harakternye vremena yadernyh reakcii sravnimy s makroskopicheskimi (teplovym ili gidrodinamicheskim) i gde neobhodimo rassmotrenie kinetiki yadernyh reakcii. Pri dannoi temperature \( T \) i plotnosti
$$
\eqalign{ \rho&=\sum_i n_{A_i Z_i}m_{A_i Z_i}+n_{\mathrm{p}} m_{\mathrm{p}}+n_{\mathrm{n}} m_{\mathrm{n}} \cr &\approx \left(\sum A_i n_{A_i Z_i}+n_{\mathrm{p}}+n_{\mathrm{n}}\right)m_{\mathrm{u}} \cr
}
$$ (3.4)

dlya nahozhdeniya yadernogo sostava neobhodimo znat' svyaz' mezhdu koncentraciyami \( n_{n} \) i \( n_{p} \).


Tablica 5. Energii svyazi i spiny yader stabil'nyh izotopov naibolee obil'nyh elementov [135180]
Atomnyi nomer Element (izotop) Energiya svyazi \( E_{b} \), keV Spin yadra I
1 \( ^{1}H \), \( ^{2}H \) 0.2225 1/2, 1
2 \( ^{3}He \), \( ^{4}He \) 7718, 28297 1/2, 0
6 \( ^{12}C \), \( ^{13}C \) 92165, 97112 0, 1/2
7 \( ^{14}N \), \( ^{15}N \) 104663, 115496 1, 1/2
8 \( ^{16}O \), \( ^{17}O \), \( ^{18}O \) 127624, 131766, 139813 0, 5/2, 0
10 \( ^{20}Ne \), \( ^{21}Ne \), \( ^{22}Ne \) 160651, 167412, 177778 0, 3/2, 0
11 \( ^{23}Na \) 186570 3/2
12 \( ^{24}Mg \), \( ^{25}Mg \), \( ^{26}Mg \) 198262, 205594, 216688 0, 5/2, 0
13 \( ^{27}Al \) 224959 5/2
14 \( ^{28}Si \), \( ^{29}Si \), \( ^{30}Si \) 236544, 245018, 255627 0, 1/2, 0
15 \( ^{31}P \) 262925 1/2
16 \( ^{32}S \), \( ^{33}S \), \( ^{34}S \) 271789, 280432, 291847 0, 3/2, 0
17 \( ^{35}Cl \), \( ^{37}Cl \) 298220, 317112 3/2, 3/2
18 \( ^{36}Ar \), \( ^{38}Ar \), \( ^{40}Ar \) 306727, 327354, 343822 0, 0, 0
20 \( ^{40}Ca \), \( ^{42}Ca \), \( ^{43}Ca \) 342063, 361900, 369832 0, 0, 7/2
  \( ^{44}Ca \), \( ^{46}Ca \), \( ^{48}Ca \) 380969, 398787, 416014 0, 0, 0
24 \( ^{50}Cr \), \( ^{52}Cr \), \( ^{53}Cr \), \( ^{54}Cr \) 435061, 456364, 464304, 474024 0, 0, 3/2, 0
25 \( ^{55}Mn \) 482091 5/2
26 \( ^{54}Fe \), \( ^{56}Fe \), \( ^{57}Fe \), \( ^{58}Fe \) 471779, 492280, 499926, 509969 0, 0, 1/2, 0
28 \( ^{58}Ni \), \( ^{60}Ni \), \( ^{61}Ni \) 506484, 526871, 534691 0, 0, 3/2
  \( ^{62}Ni \), \( ^{64}Ni \) 545288, 561788 0, 0
\( B_{A,Z}=\left( Zm_{p}+\left( A-Z\right) m_{n}-m_{A,Z}\right) c^{2} \)
\( m_{n}=m_{p}+m_{e}+782.5 \) keV

Vzaimoprevrasheniya protonov i neitronov, kak svobodnyh, tak i svyazannyh v yadrah, proishodyat v reakciyah slabogo vzaimodeistviya (sm. gl. 5). Harakternoe vremya slabyh processov \( t_{\beta } \) pri vysokoi temperature znachitel'no bol'she yadernogo \( t_{n} \) i mozhet byt' poryadka mikroskopicheskogo, gidrodinamicheskogo ili teplovogo. Neitrino, voznikayushie pri slabyh vzaimodeistviyah, svobodno uletayut iz zvezd. V etih usloviyah termodinamicheskoe ravnovesie otnositel'no reakcii slabogo vzaimodeistviya otsutstvuet. Isklyuchenie sostavlyayut goryachie neitronnye zvezdy, kotorye neproznachny dlya neitrino s energiei \( E_{\nu _{e}}\geq 1\mbox{~MeV} \). Termodinamicheskie funkcii ravnovesnogo neitrinnogo gaza \( \nu _{e} \), \( \widetilde{\nu _{e}} \)-gaza s \( kT\gg m_{\mu _{e}}c^{2} \)5 analogichny elektronnym (2.56), gde \( \beta =\mu _{\nu _{e}}/kT \), a velichiny \( E_{\nu _{e}\widetilde{\nu _{e}}} \), \( P_{\nu _{e}\widetilde{\nu _{e}}} \), \( S_{\nu _{e}\widetilde{\nu _{e}}} \) v dva raza men'she, chem \( E_{e\pm } \), \( P_{e\pm } \) i \( S_{e\pm } \) za schet statisticheskogo vesa. V levoi chasti pervogo sootnosheniya (2.56), sluzhashego dlya nahozhdeniya \( \mu _{\nu _{e}} \), \( \rho /\mu _{Z}m_{u} \) vmesto \( \rho /\mu _{Z}m_{u} \) dolzhna stoyat' velichina, svyazannaya s koncentraciei leptonnogo zaryada \( Q_{\nu _{e}}:2\left( Q_{\nu _{e}}-n_{e-}+n_{e+}\right) =2\left( n_{\nu _{e}}-n_{\widetilde{\nu _{e}}}\right) \). Posle takih zamen vse formuly p.d 2 primenimy dlya ravnovesnogo neitrinnogo gaza, a svyaz' mezhdu \( n_{p} \) i \( n_{n} \) opredelyaetsya sootnosheniyami mezhdu himicheskimi potencialami


$$ \mu_{\mathrm{n}}=\mu_{\mathrm{p}}+\mute+\mu_{\nuet},\quad \mu_{\nuet}=-\mu_{\nue}.
$$ (3.5)

Vtoroe sootnoshenie (3.5) sleduet iz ravnovesiya reakcii \( \nu _{e}+\widetilde{\nu _{e}}\rightarrow e^{+}+e^{-} \) i usloviya (2.11). Ravnovesie drugih tipov neitrino \( \nu _{\mu } \) i \( \nu _{\tau } \) opisyvaetsya analogichno \( \nu _{e} \), hotya ono vryad li dostizhimo dazhe v goryachih neitronnyh zvezdah iz-za bol'shoi massy ih leptonov.

V usloviyah svobodnogo uleta neitrino strogoe nahozhdenie svyazi \( n_{p} \) i \( n_{n} \) sostoit v reshenii uravnenii kinetiki beta-processov

$$
\eqalign{ &{dN_{\mathrm{n}}\over dt}=-{dN_{\mathrm{p}}\over dt} =\sum_i\left(W_{A_iZ_i}^+ -W_{A_iZ_i}^-\right)n_{A_iZ_i}, \cr &N_{\mathrm{n}}=\sum_i(A_i-Z_i)n_{A_i Z_i}+n_{\mathrm{n}}, \cr &N_{\mathrm{p}}=\sum_i Z_i n_{A_i Z_i}+n_{\mathrm{p}}. \cr
}
$$ (3.6)

pri izvestnom nachal'nom sootnoshenii mezhdu \( N_{n} \) i \( N_{p} \). V rabote [328] parametr \( N_{n}/N_{p} \) schitalsya nezavisimym pri raschetah yadernogo ravnovesiya elementov gruppy zheleza. V pervom sootnoshenii (3.6) pri summirovanii nuzhno uchityvat' svobodnye neitrony i protony. Skorosti beta-reakcii (\( c^{-1} \)) \( W^{+}_{A,Z}=W_{A,Z}(e^{+}-\mbox{raspad})+W_{A,Z}(e^{-}-\mbox{zahvat}) \) i \( W^{-}_{A,Z}=W_{A,Z}(e^{-}-\mbox{raspad})+W_{A,Z}(e^{+}-\mbox{zahvat}) \) rassmotreny v paragrafe 19.

Ris. 6. Izentropy veshestva na ploskosti $T$, $\rho$. Dlya 109 < T < 2.1010K, 105 < $\rho$ < 1010 g/sm3 izentropy postroeny dlya ravnovesnogo himicheskogo sostava po dannym raboty [114]. Shtrihovaya liniya razdelyaet oblasti $\gamma_1$ > 4/3 i $\gamma_1$ < 4/3 i postroena po dannym raschetov [46]. Shtrihpunktirnye linii razdelyayut oblasti $\gamma_1$ > 4/3 i $\gamma_1$ < 4/3 i postroeny po dannym raboty [114] s uchetom raspada zheleza. Cifry na risunke sootvetstvuyut sleduyushim ieentropam: 1 - $S_{10}$ = 0,003981, 2 - $S_{10}$ = 0,01, 3 - $S_{10}$ = 0,01585, 4 - $S_{10}$ = 0,02512, 5 - $S_{10}$ = 0,03981, 6 - $S_{10}$ = 0,0631, 7 - $S_{10}$ = 0,1, 8 - $S_{10}$ = 0,1585, 9 - $S_{10}$ = 0,2512, 10 - $S_{10}$ = 0,3981, 11 - $S_{10}$ = 0,631, 12 - $S_{10}$ = 1,0, 13 - $S_{10}$ = 2,512, 14 - $S_{10}$ = 10, 15 - $S_{10}$ = 15,85, $S_{10} = S/10$ erg g-1 K-1

Esli v techenie vremeni \( t\gg t_{\beta } \) velichiny \( T \) i \( \rho \) v zvezde menyayutsya slabo, to dostigaetsya kineticheskoe ravnovesie po beta-processam s \( dN_{n}/dt=0 \) v (3.6). V etom sluchae sootnosheniya (3.6) odnoznachno opredelyayut sostav veshestva [117-119, 224]. Dlya priblizhennogo opredeleniya sostava v usloviyah svobodnogo uleta neitrino inogda ispol'zuetsya sootnoshenie (3.5) s \( \mu _{\nu _{e}}=0 \). Raschety v etom priblizhenii sdelany v [114]. V yadernom ravnovesii uchityvalis' yadra zheleza \( ^{56}Fe \), vklyuchaya sem' pervyh vozbuzhdennyh urovnei, \( ^{4}He \), \( n \) i \( p \). Rost temperatury vedet snachala k rasshepleniyu yader zheleza na \( ^{4}He \) i nuklony, a zatem k chisto nuklonnomu sostavu. Pri bol'shoi plotnosti osnovnuyu chast' svobodnyh nuklonov sostavlyayut neitrony. Na ris. 6 iz [46] privedeny izentropy veshestva na ploskosti \( \rho \), \( T \) i ukazany oblasti s \( \gamma _{1}\lt 4/3 \), neobhodimye dlya analiza ustoichivosti (sm. gl.12). V oblasti yadernogo ravnovesiya ispol'zovalis' rezul'taty [114].



<< 2. Relyativistskii gaz s ... | Oglavlenie | 4. Veshestvo pri bol'shih ... >>

Publikacii s klyuchevymi slovami: Evolyuciya zvezd - fizicheskie processy
Publikacii so slovami: Evolyuciya zvezd - fizicheskie processy
Sm. takzhe:
Vse publikacii na tu zhe temu >>

Ocenka: 2.6 [golosov: 87]
 
O reitinge
Versiya dlya pechati Raspechatat'

Astrometriya - Astronomicheskie instrumenty - Astronomicheskoe obrazovanie - Astrofizika - Istoriya astronomii - Kosmonavtika, issledovanie kosmosa - Lyubitel'skaya astronomiya - Planety i Solnechnaya sistema - Solnce


Astronet | Nauchnaya set' | GAISh MGU | Poisk po MGU | O proekte | Avtoram

Kommentarii, voprosy? Pishite: info@astronet.ru ili syuda

Rambler's Top100 Yandeks citirovaniya