Rambler's Top100Astronet    
  po tekstam   po klyuchevym slovam   v glossarii   po saitam   perevod   po katalogu
 

LaTeX: indeksy, stepeni, korni

Indeksy zadayutsya v matematicheskom rezhime komandami ^ (verhnii indeks) i _ (nizhnii indeks). Ne zabyvaite pro figurnye skobki, esli v indekse bolee odnogo simvola ili komandy (probely pered nimi ne schitayutsya).

Primery:

$x^2$ $x^2$
$x^2y$ $x^2y$
$x^{2y}$
$x^\alpha$ $x^\alpha$
$x^ \alpha$ $x^ \alpha$
$x_{12}$ $x_{12}$
$x^3_{12}$ $x^3_{12}$
$x_{12}^3$ $x_{12}^3$
${x_{12}}^3$ ${x_{12}}^3$
Indeks k indeksu
$x^{y^z}$ $x^{y^z}$
${x^y}^z$ ${x^y}^z$
$x_{y_z}$ $x_{y_z}$
${x_y}_z$ ${x_y}_z$
$(((x^2)^3)^4)$ $(((x^2)^3)^4)$
$({({(x^2)}^3)}^4)$     $({({(x^2)}^3)}^4)$

Na poslednih primerah vidno, kak vazhno pravil'no rasstavlyat' gruppiruyushie skobki: indeks, sleduyushii za gruppoi simvolov, zaklyuchennoi v {}, otnositsya ko vsei gruppe i raspolagaetsya sootvetstvenno.
Razmer indeksov men'she, chem razmer osnovnogo teksta, no ego mozhno izmenit'.
Esli neobhodimo postavit' indeks pered simvolom, to sdelaite pustuyu gruppu pered nim ili sgruppiruite ego so sleduyushim simvolom.

$_n^mX + _k^lY \to \dots$ $_n^mX + _k^lY \to \dots$
${}_n^mX + {}_k^lY \to \dots$ ${}_n^mX + {}_k^lY \to \dots$
${_n^mX} + {_k^lY} \to \dots$ ${_n^mX} + {_k^lY} \to \dots$
${_n^m}X + {_k^l}Y \to \dots$     ${_n^m}X + {_k^l}Y \to \dots$

Dlya vyravnivaniya indeksov primenyaetsya opyat'-taki gruppirovka.

${P^i_{jk}}^l$ ${P^i_{jk}}^l$
${{P^i}_{jk}}^l$ ${{P^i}_{jk}}^l$
$P^i{}_{jk}{}^l$     $P^i{}_{jk}{}^l$
$P_1^2$ $P_1^2$
$P{}_1^2$ $P{}_1^2$
Otmetim takzhe, kak zapisyvaetsya proizvodnaya so shtrihom.
$f^\prime$ $f^\prime$
$f^{\prime\prime}$ $f^{\prime\prime}$
$f'$ $f'$
$f''$ $f''$
$f_1''$ $f_1''$
$f''_1$ $f''_1$
$f'^2$ $f'^2$
$f'{}^2$ $f'{}^2$

Indeksy k simvolam peremennogo razmera (summa, integral i t.d.) i k imenam funkcii (sin, lim i t.d.) vedut sebya bolee slozhno.

Primery zapisi kornei:
$\sqrt2$ $\sqrt2$
$\sqrt 2$
$\sqrt{2}$ $\sqrt{2}$
$\sqrt x$ $\sqrt x$
$\sqrt{x}$ $\sqrt{x}$
$\sqrt 2+x$ $\sqrt 2+x$
$\sqrt{2+x}$ $\sqrt{2+x}$
$\sqrt 2+\sqrt x$ $\sqrt 2+\sqrt x$
$\sqrt{2+\sqrt x}$ $\sqrt{2+\sqrt x}$
$\sqrt[3]{x^2+h^2}$ $\sqrt[3]{x^2+h^2}$
Zdes' gorizontal'nye linii prygayut, razmer radikala menyaetsya:
$\sqrt e + \sqrt f + \sqrt g + \sqrt h$ $\sqrt e + \sqrt f + \sqrt g + \sqrt h$
Zdes' uzhe luchshe, potomu chto est' nevidimye rasporki:
$\sqrt {e\vphantom{f}} + \sqrt {f\vphantom{f}} + \sqrt {g\vphantom{f}} + \sqrt {h\vphantom{f}}$ $\sqrt {e\vphantom{f}} + \sqrt {f\vphantom{f}} + \sqrt {g\vphantom{f}} + \sqrt {h\vphantom{f}}$
$\sqrt {e\mathstrut} + \sqrt {f\mathstrut} + \sqrt {g\mathstrut} + \sqrt {h\mathstrut}$ $\sqrt {e\mathstrut} + \sqrt {f\mathstrut} + \sqrt {g\mathstrut} + \sqrt {h\mathstrut}$


Mneniya chitatelei [2]
Ocenka: 3.4 [golosov: 266]
 
O reitinge
Versiya dlya pechati Raspechatat'

Astrometriya - Astronomicheskie instrumenty - Astronomicheskoe obrazovanie - Astrofizika - Istoriya astronomii - Kosmonavtika, issledovanie kosmosa - Lyubitel'skaya astronomiya - Planety i Solnechnaya sistema - Solnce


Astronet | Nauchnaya set' | GAISh MGU | Poisk po MGU | O proekte | Avtoram

Kommentarii, voprosy? Pishite: info@astronet.ru ili syuda

Rambler's Top100 Yandeks citirovaniya