Rambler's Top100Astronet    
  po tekstam   po klyuchevym slovam   v glossarii   po saitam   perevod   po katalogu
 

Na pervuyu stranicu Dvizhushiesya obolochki zvezd << Glava I. Odnorodnaya sreda | Oglavlenie | 1.2 Stepen' vozbuzhdeniya i ionizacii >>

1.1 Osnovnye uravneniya

Pust' ni - chislo atomov v i-m sostoyanii, n+- chislo ionizovannyh atomov i ne - chislo svobodnyh elektronov v 1 sm3, sootvetstvenno. Chislo ionizacii s i-go urovnya, proishodyashih v 1 sm3 za 1 sek., my oboznachim cherez niBicρic, gde Bic - einshteinovskii koefficient poglosheniya i ρic - plotnost' izlucheniya za granicei i-i serii, chislo zahvatov na i-i uroven' - cherez nen+Ci(Te), gde Ci(Te) - nekotoraya funkciya ot elektronnoi temperatury Te, i chislo spontannyh perehodov s i-go urovnya na k-i - cherez niAik, gde Aik - einshteinovskii koefficient spontannogo perehoda.

Esli by sreda byla nepodvizhnoi, to perehody s i-go urovnya na k-i v tochnosti uravnoveshivalis' by perehodami s k-go urovnya na i-i, tak kak vse kvanty, izluchaemye v spektral'nyh liniyah, pogloshalis' by v samoi srede. Pri nalichii zhe gradienta skorosti chislo perehodov s i-go urovnya na k-i budet bol'she chisla obratnyh perehodov, tak kak nekotoraya dolya kvantov v sootvetstvuyushei linii uidet iz sredy vsledstvie effekta Dopplera. Etu dolyu my oboznachim cherez βki. Togda izbytok chisla perehodov tipa i → k nad obratnymi perehodami budet raven niAikβki.

V stacionarnom sostoyanii chislo perehodov atomov iz i-go sostoyaniya vo vse drugie dolzhno ravnyat'sya chislu perehodov v i-oe sostoyanie. Vsledstvie etogo my poluchaem

\begin{eqnarray} n_{i}\left(\sum_{k=1}^{i-1} A_{ik} \beta_{ki} + B_{ic} \rho_{ic}\right) = \sum_{k=i+1}^{\infty} n_{k} A_{ki} \beta_{ik} + n_{e} n^{+} C_{i}(T_{i})\nonumber \\ (i=1,2,3...).\nonumber
\end{eqnarray} (1)

V etih uravneniyah velichiny ρic schitayutsya izvestnymi i ravnymi

\begin{eqnarray} \rho_{ic}=W\rho_{ic}^*,\nonumber
\end{eqnarray} (2)

gde ρic* - plotnost' izlucheniya za granicei i-i serii na poverhnosti zvezdy i W - koefficient dilyucii.

Prezhde vsego nam nado opredelit' velichiny βik. Pristupaya k etomu, my dopustim, chto kak koefficient poglosheniya, tak i koefficient izlucheniya v linii chastoty νik otlichny ot nulya i postoyanny v intervale Δνik, ravnom

\begin{eqnarray} \Delta\nu_{ik}=2\frac{u}{c}\nu_{ik},\nonumber
\end{eqnarray} (3)

gde u - srednyaya termicheskaya skorost' atomov i s - skorost' sveta, i ravny nulyu vne etogo intervala. Dlya koefficienta poglosheniya v linii my imeem

\begin{eqnarray} \alpha_{ik}=\frac{n_{i} B_{ik}}{c\Delta\nu_{ik}} \left(1-\frac{g_i}{g_k}\frac{n_k}{n_i} \right) h\nu_{ik}\nonumber
\end{eqnarray} (4)

Kogda izluchenie, vyhodyashee iz tochki A, pridet v tochku V, nahodyashuyusya na rasstoyanii s ot A, to ono budet oslableno v eαiks raz i budet smesheno po chastote na velichinu

\begin{eqnarray} \nu_{ik}^{'}-\nu_{ik}=\frac{\nu_{ik}}{c}\frac{dv}{ds}s,\nonumber
\end{eqnarray} (5)

gde $\frac{dv}{ds}$ - gradient skorosti v srede. Sledovatel'no, iz izlucheniya, vyhodyashego iz A, budet pogloshena v srede lish' sleduyushaya chast':

\begin{eqnarray} \int\limits_0^\infty e^{-\alpha_{ik}s} \left(1-\frac{\nu_{ik}^{'}-\nu_{ik}}{2\Delta\nu_{ik}}\right)\alpha_{ik}ds=1-\frac{1}{2u}\frac{dv}{\alpha_{ik}ds}.\nonumber
\end{eqnarray} (6)

Takim obrazom dlya velichiny βik my nahodim

\begin{eqnarray} \beta_{ik}=\frac{1}{2u}\frac{dv}{\alpha_{ik}ds}.\nonumber
\end{eqnarray} (7)

Naidennoe vyrazhenie dlya βik my dolzhny podstavit' v uravnenie (1). No legko videt', chto

\begin{eqnarray}
A_{ki}\beta_{ik}=\frac{\frac{g_2}{g_1}n_1-n_2}{\frac{g_k}{g_i}n_i-n_k}\left(\frac{\nu_{ik}}{\nu_{12}}\right)^3A_{21}\beta_{12}.\nonumber
\end{eqnarray} (8)

Poetomu v rezul'tate podstanovki my poluchaem

\begin{eqnarray} n_i\left[x\sum_{k=1}^{i-1} \frac{\frac{g_2}{g_1}n_1-n_2}{\frac{g_i}{g_k}n_k-n_i}\left(\frac{\nu_{ki}}{\nu_{12}}\right)^3+\frac{B_{ic}\rho_{ic}^*}{A_{21}}\right]=\nonumber\\
=x\sum_{k=i+1}^{\infty} n_k \frac{\frac{g_2}{g_1}n_1-n_2}{\frac{g_k}{g_i}n_i-n_k}\left(\frac{\nu_{ik}}{\nu_{12}}\right)^3+\frac{n_e n^+ C_i}{WA_{21}},\nonumber
\end{eqnarray} (9)

gde oboznacheno

\begin{eqnarray} x=\frac{\beta_{12}}{W}.\nonumber
\end{eqnarray} (10)

Sistema uravnenii (9) polnost'yu opredelyaet stepen' vozbuzhdeniya i ionizacii v srede, t. e. velichiny $\frac{n_i}{n_1}$ i $\frac{n_e n^+}{Wn_i}$. Parametrami, vhodyashimi v uravneniya (9), krome velichiny h, yavlyayutsya temperatura zvezdy (vhodyashaya cherez posredstvo Bicρic*) i temperatura sredy (vhodyashaya cherez posredstvo Ci). Predstavlyaet interes to obstoyatel'stvo, chto parametrom yavlyaetsya lish' otnoshenie gradienta skorosti k koefficientu dilyucii, a ne kazhdaya iz etih velichin v otdel'nosti. Eto znachit, mezhdu prochim, chto odin i tot zhe gradient skorosti skazyvaetsya na vozbuzhdenii i ionizacii tem sil'nee, chem men'she koefficient dilyuci.

Poluchennye nami uravneniya otnosyatsya k sluchayu, kogda sreda neprozrachna dlya izlucheniya vo vseh liniyah. Dopustim teper', chto sreda prozrachna v liniyah vseh serii, nachinaya s j-i. Togda, ochevidno, v nashih uravneniyah my dolzhny polozhit'

\begin{eqnarray} \beta_{ik}=1 \quad (i=j,j+1,j+2,...).\nonumber
\end{eqnarray} (11)

My znaem, chto gazovye tumannosti polnost'yu prozrachny dlya izlucheniya v liniyah subordinatnyh serii i neprozrachny dlya izlucheniya v liniyah osnovnoi serii. Polagaya v uravneniyah (1) βik=1 (i = 2,3,4,...), β1k=0 i prenebregaya ionizaciei iz vozbuzhdennyh sostoyanii, poluchaem

\begin{eqnarray} n_{i} \sum_{k=2}^{i-1} A_{ik} = \sum_{k=i+1}^{\infty} n_{k} A_{ki}+ n_{e} n^{+}C_{i}.\nonumber
\end{eqnarray} (12)

Sistema uravnenii (12) byla ran'she rassmotrena Cillie[1].
<< Glava I. Odnorodnaya sreda | Oglavlenie | 1.2 Stepen' vozbuzhdeniya i ionizacii >>
Publikacii s klyuchevymi slovami: obolochki zvezd - perenos izlucheniya
Publikacii so slovami: obolochki zvezd - perenos izlucheniya
Sm. takzhe:

Ocenka: 2.9 [golosov: 138]
 
O reitinge
Versiya dlya pechati Raspechatat'

Astrometriya - Astronomicheskie instrumenty - Astronomicheskoe obrazovanie - Astrofizika - Istoriya astronomii - Kosmonavtika, issledovanie kosmosa - Lyubitel'skaya astronomiya - Planety i Solnechnaya sistema - Solnce


Astronet | Nauchnaya set' | GAISh MGU | Poisk po MGU | O proekte | Avtoram

Kommentarii, voprosy? Pishite: info@astronet.ru ili syuda

Rambler's Top100 Yandeks citirovaniya