Rambler's Top100Astronet    
  po tekstam   po klyuchevym slovam   v glossarii   po saitam   perevod   po katalogu
 

Na pervuyu stranicu Dvizhushiesya obolochki zvezd << Glava IV. Obolochki novyh zvezd | Oglavlenie | 4.2 Real'nyi atom >>

4.1 Atom s tremya urovnyami

V etom paragrafe chislo ionizovannyh atomov my budem oboznachat' cherez n3 (vmesto n+), a pod statisticheskim vesom tret'ego sostoyaniya budem ponimat' velichinu

$$
g_3 = g^+\frac{(2\pi mkT)^{\frac{3}{2}}}{n_e h^3} .
$$ (1)

Naryadu s shirinoi spektral'noi linii Δν12 my vvedem effektivnye shiriny Δν13 i Δν23 . Togda formal'no tretii uroven' nichem ne budet otlichat'sya ot pervyh dvuh. Raznica mezhdu nimi budet tol'ko ta, chto dlya izlucheniya s chastotoi ν12 budet imet' znachenie effekt Doplera, a dlya izlucheniya s chastotami ν13 i ν23 - ne budet.

Usloviya luchevogo ravnovesiya my poluchim iz uslovii costoyanstva chisla atomov v kazhdom iz sostoyanii. Dlya pervogo i tret'ego sostoyanii eti usloviya imeyut vid:

$$
\left.
\begin{array}{l}
n_1 B_{12}\rho_{12} + n_1 B_{13}\rho_{13} = n_2 A_{21} + n_3 A_{31} \\ n_1 B_{13}\rho_{13} + n_2 B_{23}\rho_{23} = n_3 A_{31} + n_3 A_{32}
\end{array}
\right\}
$$ (2)

Zdes' my prenebregli perehodami, vyzvannymi stolknoveniyami, a takzhe einshteinovskim otricatel'nym poglosheniem. Vvedem teper' velichiny, obychno upotreblyaemye v teorii luchevogo ravnovesiya. Pust' aik - ob'emnyi koefficient poglosheniya, Jik - intensivnost' izlucheniya, εik - kolichestvo energii, izluchaemoe 1 sm3 za 1 sek. v edinichnom telesnom ugle.

My imeem

$$
a_{ik} = \frac{n_i B_{ik} h\nu_{ik}}{c\Delta \nu_{ik}} ,
$$ (3)
$$
\rho_{ik} = \frac{1}{c} \int J_{ik} d\omega ,
$$ (4)
$$
4\pi\epsilon_{ik}\Delta\nu_{ik} = n_k A_{ki} h\nu_{ik} ,
$$ (5)

i uravneniya (2) mogut byt' perepisany v vide:

$$
\left.
\begin{array}{l}
\frac{a_{12}\Delta\nu_{12}}{h\nu_{12}}\int J_{12} d\omega + \frac{a_{13}\Delta\nu_{13}}{h\nu_{13}}\int J_{13} d\omega = 4\pi\epsilon_{12}\frac{\Delta\nu_{12}}{h\nu_{12}} + 4\pi\epsilon_{13}\frac{\Delta\nu_{13}}{h\nu_{13}} \\ \\ \frac{a_{13}\Delta\nu_{13}}{h\nu_{13}}\int J_{13} d\omega + \frac{a_{23}\Delta\nu_{23}}{h\nu_{23}}\int J_{23} d\omega = 4\pi\epsilon_{13}\frac{\Delta\nu_{13}}{h\nu_{13}} + 4\pi\epsilon_{23}\frac{\Delta\nu_{23}}{h\nu_{23}} \end{array}
\right\}
$$ (6)

Estestvenno vvesti zdes' velichiny Kik i Cik, ravnye

$$
K_{ik} = J_{ik}\frac{\Delta\nu_{ik}}{h\nu_{ik}}, \quad C_{ik} = \epsilon_{ik}\frac{\Delta\nu_{ik}}{h\nu_{ik}}.
$$ (7)

Krome togo, polozhim

$$
\frac{a_{13}}{a_{12}} = \frac{B_{13}\nu_{13}\Delta\nu_{12}}{B_{12}\nu_{12}\Delta\nu_{13}} = q,
$$ (8)
$$
\frac{a_{13}C_{13}}{a_{23}C_{23}}=\frac{A_{31}}{A_{32}}=\frac{p}{1-p} .
$$ (9)

Togda vmesto (6) poluchaem

$$
\left.
\begin{array}{l}
C_{12}=\int K_{12}\frac{d\omega}{4\pi} - q\left(C_{13}-\int K_{13}\frac{d\omega}{4\pi}\right) \\ \\
C_{13}=p\int K_{13}\frac{d\omega}{4\pi} + p\frac{a_{23}}{a_{13}}\int K_{23}\frac{d\omega}{4\pi}
\end{array}
\right\}
$$ (10)

Tak kak otnoshenie a23/a13 proporcional'no velichine C12, to, voobshe govorya, vtoroe iz etih uravnenii yavlyaetsya nelineinym. Odnako my uzhe uslovilis' schitat', chto opticheskaya tolshina obolochki v chastote ν23 men'she edinicy. Poetomu velichinu ρ23 mozhno schitat' postoyannoi.

S pomosh'yu vysheprivedennyh formul legko nahodim

$$
\frac{a_{23}}{a_{13}}\int K_{23}\frac{d\omega}{4\pi} = \frac{g_3}{g_2}\frac{A_{32}}{A_{21}}\frac{W\rho_{23}}{q}C_{12} ,
$$ (11)

gde ispol'zovano odno iz obychnyh oboznachenii:

$$
\sigma_{ik} = \frac{8\pi h\nu_{ik}}{c^3}, \quad \bar \rho_{ik} = \frac{1}{e^{\frac{h\nu_{ik}}{kT}}-1}.
$$ (12)

Vvedem eshe sleduyushee oboznachenie:

$$
\gamma = 3p\frac{g_3}{g_2}\frac{A_{32}}{A_{21}}W\bar \rho_{23} .
$$ (13)

Togda, podstavlyaya (11) v (10), okonchatel'no poluchaem

$$
\left.
\begin{array}{l}
C_{12}=\left(1-\frac{\gamma}{3}\right)\int K_{12}\frac{d\omega}{4\pi} + q(1-p)\int K_{13}\frac{d\omega}{4\pi} \\ \\
C_{13}=p\int K_{13}\frac{d\omega}{4\pi} + \frac{\gamma}{3q}\int K_{12}\frac{d\omega}{4\pi}
\end{array}
\right\}
$$ (14)

Takovy usloviya luchevogo ravnovesiya nashei zadachi.

Vvedem opticheskie rasstoyaniya ot vnutrennei granicy obolochki v chastotah ν12 i ν13:

$$
t=\int\limits_{r_1}^r a_{12}d_2, \quad \tau=\int\limits_{r_1}^r a_{13}d_2,
$$ (15)

gde r1 i r sut' rasstoyaniya vnutrennei granicy obolochki i dannogo sloya ot zvezdy. Oboznachim cherez θ ugol mezhdu napravleniem izlucheniya i napravleniem vneshnei normali k sloyu.

Togda uravnenie perenosa izlucheniya v chastote ν13 budet imet' obychnyi vid

$$
\cos\theta\frac{dK_{13}}{d\tau} = C_{13} - K_{13} .
$$ (16)

No dlya izlucheniya v chastote ν12, dlya kotorogo igraet rol' effekt Doplera, v predydushei glave my poluchili bolee slozhnoe uravnenie (III, 17). Schitaya, chto velichina β mala, vmesto uravneniya (III, 17) priblizhenno nahodim

$$
K_{12}(t,\theta) = \int\limits_0^t C_{12}(t')e^{-(t-t')\sec\theta (1+\beta\sec^2\theta)}\sec\theta dt'
$$ (17)

Otsyuda poluchaetsya sleduyushee uravnenie perenosa izlucheniya v chastote ν12:

$$
\cos\theta\frac{dK_{12}}{dt} = -(1+\beta\cos^2\theta)K_{12} + C_{12} .
$$ (18)

Takim obrazom nasha zadacha svoditsya k resheniyu uravnenii (14), (16) i (18).

V predydushei glave, rassmatrivaya luchevoe ravnovesie planetarnoi tumannosti v chastote ν12, my sostavili integral'noe uravnenie dlya velichiny C12. Teper', dlya prostoty, my predpochli poluchit' uravnenie perenosa (18) i reshim zadachu obychnym metodom Eddingtona.

Vvedem sleduyushie oboznacheniya:

$$
\bar K_{ik} = \int K_{ik}\frac{d\omega}{4\pi}, \quad H_{ik} = \int K_{ik}\cos\theta\frac{d\omega}{4\pi}.
$$ (19)
Iz uravnenii (16) i (18) nahodim:
$$
\frac{dH_{13}}{d\tau} = C_{13} - \bar K_{13}, \quad \frac{dH_{12}}{dt} = C_{12} -(1+\frac{\beta}{3})K_{12},
$$ (20)
$$
\frac{d\bar K_{13}}{d\tau} = -3H_{13}, \quad \frac{d\bar K_{12}}{dt} = -3H_{12}.
$$ (21)

(V poslednem uravnenii my prenebregali velichinoi β po sravneniyu s edinicei). Eti uravneniya s pomosh'yu (14) dayut:

$$
\left.
\begin{array}{l}
\frac{d^2\bar K_{13}}{d\tau^2} = 3(1-p)\bar K_{13}-\frac{\gamma}{q}\bar K_{12} \\ \\
q^2\frac{d^2\bar K_{12}}{d\tau^2} = (\beta +\gamma )\bar K_{12}-3(1-p)q\bar K_{13}
\end{array}
\right\}
$$ (22)
Obshee reshenie sistemy uravnenii (22) imeet vid

$$
\bar K_{13} = Ae^{\lambda_1 \tau} + Be^{-\lambda_1 \tau}Ce^{\lambda_2 \tau} + De^{-\lambda_2 \tau}
$$ (23)
$$
\begin{array}{l}
\bar K_{12} = \frac{q}{\gamma}[3(1-p)-\lambda_1^2](Ae^{\lambda_1 \tau} + Be^{-\lambda_1 \tau}) + \\
+\frac{q}{\gamma}[3(1-p)-\lambda_2^2](Ce^{\lambda_2 \tau} + De^{-\lambda_2 \tau}),
\end{array}
$$ (24)

gde λ1 i λ2 sut' korni uravneniya

$$
[\lambda^2-3(1-p)][q^2 \lambda^2 - (\beta + \gamma)]=3(1-p)\gamma,
$$ (25)

a A, B, C, D - proizvol'nye postoyannye

V dal'neishem my budem schitat', chto

$$
\beta >> q^2 .
$$ (26)

Tak kak velichina q2 ochen' mala (poryadka 10-8), to eto uslovie yavlyaetsya vypolnennym dlya lyuboi obolochki.

$$
\lambda_1 = \sqrt{3(1-p)\frac{\beta}{\beta + \gamma}} ,
$$ (27)
$$
\lambda_2 = \frac{1}{q}\sqrt{\beta + \gamma} $$ (28)
i vmesto (24) imeem

$$
\bar K_{12} = \frac{3(1-p)q}{\beta + \gamma} (Ae^{\lambda_1 \tau} + Be^{-\lambda_1 \tau}) - \frac{\beta + \gamma}{q\gamma} (Ce^{\lambda_2 \tau} + De^{-\lambda_2 \tau}) .
$$ (29)

Chtoby naiti proizvol'nye postoyannye A, V, S, D, nado zadat' granichnye usloviya. Eti usloviya my zadaem v vide

$$ \left. \begin{array}{lr} 2H_{12} = \bar K_{12},\; 2H_{13} = \bar K_{13} & (pri\; \tau=\tau_0) \\
2H_{12} + \bar K_{12} = 0,\; H_{13} = \frac{1}{4} S_{13} & (pri\; \tau=0)
\end{array} \right\} $$ (30)

Velichina πS13, t.e. chislo kvantov v chastote ν13, padayushih ot zvezdy na vnutrennyuyu granicu obolochki, ravna

$$
\pi S_{13} = W\sigma_{13}\bar \rho_{13} c\frac{\Delta\nu_{13}}{h\nu_{13}} .
$$ (31)

Naibol'shii interes predstavlyaet sluchai, kogda opticheskaya tolshina obolochki v chastote ν13 znachitel'no prevoshodit edinicu (τ0 > 1). V chtom sluchae dlya srednih chastei obolochki my legko poluchaem

$$ \left. \begin{array}{l} \bar K_{13} = \frac{3S_{13}}{4\lambda_1}e^{-\lambda_1 \tau} \\ \\
\bar K_{12} = \frac{3(1-p)q}{\beta + \gamma} \cdot \frac{3S_{13}}{4\lambda_1}e^{-\lambda_1 \tau}
\end{array} \right\} $$ (32)

(tak kak ostal'nye chleny, vhodyashie v vyrazheniya dlya $\bar K_{13}$ i $\bar K_{12}$, igrayut lish' rol' popravok vblizi granic). Podstavlyaya (32) v (14), dlya C12 i C13 nahodim

$$ \left. \begin{array}{l} C_{12} = \frac{3(1-p)q}{\beta + \gamma} \cdot \frac{3S_{13}}{4\lambda_1}e^{-\lambda_1 \tau} \\ \\
C_{13} = \frac{p\beta + \gamma}{\beta + \gamma} \cdot \frac{3S_{13}}{4\lambda_1}e^{-\lambda_1 \tau}
\end{array} \right\} $$ (33)

Znanie velichin C12 i C13 pozvolyaet naiti stepen' vozbuzhdeniya i ionizacii v obolochke, t. e. velichiny n2/n1 i n3/n1. Na osnovanii sootnoshenii (3), (5) i (7), my imeem

$$
\frac{n_i}{n_1} = \frac{4\pi}{c}\frac{B_{1i}}{A_{i1}}\frac{h\nu_{1i}}{\Delta\nu{_{1i}}} C_{1i}
$$ (34)

i, podstavlyaya (33) v (34) nahodim

$$ \left. \begin{array}{l} \frac{n_2}{n_1} = \frac{g_2}{g_1}\bar \rho_{12} \frac{3(1-p)\gamma}{(\beta + \gamma) \lambda_1 p} e^{-\lambda_1 \tau} \\ \\
\frac{n_3}{n_1} = W\frac{g_3}{g_1}\bar \rho_{13}\frac{3}{\lambda_1}\frac{p\beta + \gamma}{\beta + \gamma} e^{-\lambda_1 \tau}
\end{array} \right\} $$ (35)

Oboznachim

$$
\beta = z\gamma .
$$ (36)

Togda formuly (35) preobrazuyutsya k vidu
$$
\frac{n_2}{n_1} = \frac{g_2}{g_1}e^{-\frac{h\nu_{12}}{kT}}\frac{1}{p} \sqrt{\frac{3(1-p)}{z(1+z)}}e^{-\tau \sqrt{\frac{3(1-p)z}{1+z}}} ,
$$ (37)

$$
\frac{n_3}{n_1} n_e = W\frac{g^+}{g_1} \frac{(2\pi mkT)^{\frac{3}{2}}}{h^3} e^{-\frac{h\nu_{13}}{kT}} \frac{3(1+pz)}{\sqrt{3(1-p)z(1+z)}}e^{-\tau \sqrt{\frac{3(1-p)z}{1+z}}} ,
$$ (38)

Eti formuly yavlyayutsya dlya nas okonchatel'nymi. Otmetim, chto v sluchae nepodvizhnoi obolochki t. e. pri β = 0, velichiny $\bar K_{12}$ i $\bar K_{13}$, a znachit, i velichiny n2/n1 i n3/n1, yavlyayutsya ne eksponencial'nymi, kak poluchilos' u nas, a lineinymi funkciyami ot opticheskogo rasstoyaniya.

Do sih por schitalos', chto v nebulyarnyh obolochkah stepen' vozbuzhdeniya i ionizacii zavisit ot treh velichin: ot temperatury zvezdy, ot koefficienta dilyucii i ot plotnosti materii. Teper' my vidim, chto ona zavisit takzhe - i pritom ves'ma sil'no - ot sostoyaniya dvizheniya obolochki. Chem bol'she gradient skorosti v obolochke, tem men'she stepen' vozbuzhdeniya i ionizacii i tem bystree ona padaet pri perehode ot vnutrennei granicy obolochki k vneshnei.


<< Glava IV. Obolochki novyh zvezd | Oglavlenie | 4.2 Real'nyi atom >>
Publikacii s klyuchevymi slovami: obolochki zvezd - perenos izlucheniya
Publikacii so slovami: obolochki zvezd - perenos izlucheniya
Sm. takzhe:

Ocenka: 2.9 [golosov: 138]
 
O reitinge
Versiya dlya pechati Raspechatat'

Astrometriya - Astronomicheskie instrumenty - Astronomicheskoe obrazovanie - Astrofizika - Istoriya astronomii - Kosmonavtika, issledovanie kosmosa - Lyubitel'skaya astronomiya - Planety i Solnechnaya sistema - Solnce


Astronet | Nauchnaya set' | GAISh MGU | Poisk po MGU | O proekte | Avtoram

Kommentarii, voprosy? Pishite: info@astronet.ru ili syuda

Rambler's Top100 Yandeks citirovaniya