Zvezdnye skopleniya << 6.9 Ispol'zovanie sootnosheniya mezhdu perehodnym periodom i svetimost'yu peremennyh tipa RR Liry dlya opredeleniya rasstoyanii do sharovyh skoplenii | Oglavlenie | 6.11 Morfologicheskie parametry gorizontal'nyh vetvei. Gruppy Mironova - Samusya >>
6.10 Dvumernaya i mnogomernaya klassifikaciya sharovyh skoplenii Galaktiki
Raschety Demarka i Gaislera (1963) pokazali, chto s rostom Z pri postoyannom Y proishodit umen'shenie naklona vetvi gigantov i uvelichenie pokazatelya cveta posledovatel'nosti subgigantov sharovyh skoplenii. V to zhe vremya vozrastanie Y pri postoyanstve Z soprovozhdaetsya umen'sheniem kak naklona vetvi gigantov, tak i pokazatelya cveta subgigantov. Opirayas' na eti rezul'taty, Hartvik (1968) razdelil vliyanie parametrov Y i Z na rid diagramm V, V - V zvezd sharovyh skoplenii. Na ris. 98, vzyatom iz ego raboty, pokazano raspolozhenie skoplenii v ploskosti S, (V - V)0,g. Strelki pokazyvayut napravleniya vozrastaniya Y i Z. Pryamye linii, sootvetstvuyushie postoyannym Z (odinakovym klassam Morgana) i postoyannym Y, delyat ploskost' na 12 oblastei.
Kosye krestiki sootvetstvuyut srednim znacheniyam <S> i <(V - V)0,g> ob'ektov v kazhdoi oblasti, v skobkah ukazany otnositel'nye soderzhaniya Y i Z v ob'ektah kazhdoi gruppy: Y vozrastaet ot 1 do 4, Z - ot 1 do 3.
Ris. 98. Zavisimost' mezhdu znacheniyami S i (V - V)0,g sharovyh skoplenii Galaktiki (Hartvik, 1968). Bol'shoi krest v levom verhnem uglu pozvolyaet sudit' o velichine oshibok, prinimaemyh dlya etih znachenii.
V tabl. 6.8 privedeny eti dannye dlya 12 klassov skoplenii, predlozhennyh Hartvikom. V pervom stolbce ukazano nazvanie skopleniya, yavlyayushegosya prototipom sootvetstvuyushego klassa. Znacheniya, privedennye v stolbce Y, my poyasnim pozzhe. Na ris. 99 privedeny shematicheskie diagrammy V, V - V zvezd etih skoplenii, pokazyvayushie zavisimost' vida ih osnovnyh posledovatel'nostei ot Y i Z.
Nablyudaemye v predelah kazhdoi iz treh grupp s odinakovym Z razlichiya <(V - V)0,g>, dostigayushie 0m,1 - 0m,2, sootvetstvuyut, naskol'ko mozhno sudit' po raschetam Ibena, Demarka i Gaislera, razlichiyam v Y, dohodyashim do 0,2 - 0,3.
Prototip | (Y,Z) | <S> | <(V - V)0,g> | Y |
M 2 | (1,1) | 6,7 | 0,72 | 0,24 |
M 92 | (2,1) | 6,2 | 0,67 | 0,26 |
M 53 | (3,1) | 5,0 | 0,68 | 0,50 |
M 22 | (4,1) | 4,2 | 0,61 | 0,26 |
NGC 4147 | (1,2) | 5,6 | 0,81 | 0,33 |
M 13 | (2,2) | 5,0 | 0,78 | 0,24 |
M 5 | (3,2) | 4,6 | 0,73 | 0,28 |
NGC 362 | (4,2) | 4,1 | 0,70 | - |
NGC 6712 | (1,3) | 4,1 | 1,00 | 0,36 |
M 107 | (2,3) | 3,4 | 0,93 | - |
47 Tuc | (3,3) | 3,4 | 0,81 | 0,42 |
NGC 6356 | (4,3) | 2,6 | 0,80 | - |
Ris. 99. Shema klassifikacii sharovyh skoplenii po vidu ih diagramm V, V - V v zavisimosti ot znachenii Y i Z (Hartvik,
1968).
Takim obrazom, vryad li mozhno schitat', chto soderzhanie geliya vo vseh sharovyh skopleniyah s malym Z odinakovo i ravno 0,3. Po-vidimomu, ono takzhe obladaet zametnoi dispersiei, chto v svoyu ochered' dolzhno prinimat'sya vo vnimanie pri reshenii problemy opredeleniya rasstoyanii do sharovyh skoplenii. V poslednem stolbce (Y) tabl. 6.8 privedeny naidennye Mironovym i Samusem (1974) znacheniya Y. Dlya raznyh skoplenii oni menyayutsya v predelah ot 0,24 do 0,50, prakticheski ne korreliruya s temi otnositel'nymi znacheniyami Y, kotorye daet Hartvik. "Kto vinovat iz nih, kto prav, - sudit' ne nam...".
Interesno ustanovit', kak svyazany mezhdu soboi dvumernaya Klassifikaciya Hartvika i delenie skoplenii na gruppy Oosterhofa. Vyyasnenie etogo voprosa privelo k poyavleniyu mnogomernoi klassifikacii sharovyh skoplenii, predlozhennoi Kastellani i dr. (1970).
Sootnosheniya mezhdu chislami peremennyh RRc i RRab, privedennye v tabl. 5.1, spravedlivy dlya bol'shinstva sharovyh skoplenii, soderzhashih peremennye tipa RR Liry. Vstrechayutsya, odnako, skopleniya, dlya kotoryh eti sootnosheniya narushayutsya (sm. ris. 73) . V svyazi s etim Kastellani, Dzhannone i Rencini vveli dopolnitel'nuyu harakteristiku dlya grupp Oosterhofa: podtip A - skoplenii, bogatye peremennymi tipa RRab, dlya kotoryh n(c)/n(ab) < 0,5, i podtip S - skopleniya, bogatye peremennymi tipa RRc, dlya kotoryh n(c)/n(ab) > 0,5. Tak poyavilis' chetyre tipa skoplenii: AI, AII, CI, SII (ris. 100). Okazalos', chto i karlikovye galaktiki v sozvezdiyah Dra, Scl i UMi, soderzhashie peremennye tipa RR Liry, i dazhe yadro nashei Galaktiki (G, N. na ris. 100) ukladyvayutsya v etu shemu klassifikacii Izuchenie svyazi mezhdu etimi tipami i soderzhaniem metallov, dlya opisaniya kotorogo upomyanutye avtory ispol'zovali parametr. Q (sm. § 6.6), privelo k neobhodimosti vydeleniya eshe odnogo tipa skoplenii - AIQ (skopleniya AI s nizkim soderzhaniem metallov: Q ≤ -0,39). Krome togo, skopleniya, ne poddayushiesya klassifikacii na gruppy Oosterhofa iz-za prakticheskogo otsutstviya v nih peremennyh tipa RR Liry, byli razdeleny eshe na dva tipa: s malym soderzhaniem metallov (prototip - M 13) i s bol'shim soderzhaniem metallov (prototip - 47 Tus).
Ris. 100. Shema, poyasnyayushaya princip utochneniya klassifikacii Oosterhofa (Kastellani i dr., 1970). Kruzhki s tochkami - skopleniya tipa AIQ.
Ris. 101. Raspolozhenie skoplenii razlichnyh tipov po klassifikacii Kastellani i dr. (1970) na diagramme S, (V - V)0,g.
Na ris. 101 (Kastellani i dr., 1970), podobnom risunku 98, pokazano raspolozhenie skoplenii vseh etih tipov (nanesennyh dlya udobstva razlichnymi simvolami, chastichno vvedennymi uzhe na ris. 100) na diagramme S, (V - V)0,g. My vidim, chto skopleniya, prinadlezhashie k odnomu i tomu zhe tipu, koncentriruyutsya v sovershenno opredelennyh oblastyah diagrammy, razgranichennyh preryvistymi liniyami. Ryadom s kazhdym simvolom stoyat (umnozhennye na 100) znacheniya parametra metallichnosti R* (Rasin, 1973), vvedennye nami na etom risunke vmesto znachenii parametra Q, okazavshegosya plohim indikatorom metallichnosti (sm. § 6.6). Ris. 101, v sochetanii s ris. 99, daet naglyadnoe predstavlenie o korrelyacii mezhdu formoi diagramm V, V - V yarkih zvezd skoplenii, svoistvami peremennyh tipa RR Liry i soderzhaniem tyazhelyh momentov v etih sistemah, v obshih chertah proyavlyavsheisya uzhe pa ris. 92.
<< Ispol'zovanie sootnosheniya mezhdu perehodnym periodom i svetimost'yu peremennyh tipa RR Liry dlya opredeleniya rasstoyanii do sharovyh skoplenii | Oglavlenie | 6.11 Morfologicheskie parametry gorizontal'nyh vetvei. Gruppy Mironova - Samusya >>
Publikacii s klyuchevymi slovami:
zvezdy - Skoplenie
Publikacii so slovami: zvezdy - Skoplenie | |
Sm. takzhe:
Vse publikacii na tu zhe temu >> |