Peremennye Zvezdy (Variable Stars) 32, No. 6, 2012 Received 28 August; accepted 3 September.
|
Article in PDF |
CCD UBVRI photometry is presented for type IIb
SN 2011dh for about 300 days. The main photometric parameters are
derived and the comparison with SNe of similar types is reported.
The light curves are similar to those for SN IIb 2008ax, but the
initial flash is stronger and very short, and there are humps on
the light curves in ![]() ![]() |
On May 31, 2011, a supernova exploded in the bright nearby spiral
galaxy M51 (NGC 5194, Whirlpool galaxy). The outburst, designated
SN 2011dh, was promptly discovered independently by several
amateurs and the Palomar Transient Factory (see CBET No. 2736 and
Arcavi et al. 2011b for details). The early discovery of such a
nearby SN facilitated numerous follow-up studies. Early spectra
and light curve indicated SN 2011dh to belong to the class of
stripped-envelope core-collapse SNe, designated as type IIb
(Arcavi et al. 2011a, 2011b). The progenitor or progenitor system
was identified in archival images obtained by the HST (Li and
Filippenko 2011), although its nature remains controversial. Maund
et al. (2011) suggest it was a yellow supergiant with initial mass
about 13, while Van Dyk et al. (2011) prefer higher
mass, in the 18-21
range. The variability of the
candidate progenitor was reported by Szczygiel et al. (2012).
Multi-wavelength follow-up observations in the radio, millimiter,
X-ray, and gamma-ray bands suggest a compact progenitor with
cm, which is inconsistent with the radius of
the yellow supergiant, so this star may be a binary companion of
presupernova or even unrelated to the SN (Soderberg et al. 2012).
Radio observations were reported also by Krauss et al. (2012),
Marti-Vidal et al. (2011), and Bietenholz et al. (2012). Vinkó
et al. (2012) presented optical spectroscopy and photometry of SN
2011dh and applied the Expanding Photosphere Method to derive the
distance of 8.4 Mpc for M51.
On June 1, 2011, a sequence of unfiltered images of M51 was
obtained with the 192-mm telescope (hereafter C19), equipped with
an FLI PL16803 CCD camera, at Crimean Observatory of the Sternberg
Astronomical Institute (SAI). 53 frames were obtained in the
19:25-20:31 UT time interval. 5 days later we started regular
monitoring of SN 2011dh and continued observations till 2012
April 4. CCD images in the Johnson-Cousins bands were
obtained with the following instruments: the 15-cm and 60-cm
telescopes of the Astronomical Institute of Slovak Academy of
Sciences at Tatranska Lomnica (S15, S60), equipped, respectively,
with SBIG ST-10XME and Princeton Instruments VersArray F512 CCD
cameras; the 60-cm reflector of the SAI Crimean Observatory (C60)
with an Apogee AP-47p camera; the 70-cm SAI reflector in Moscow
(M70) with an Apogee AP-7p camera; the 60-cm reflector of Simeiz
Observatory (K60) with a VersArray F512 camera; and the 1-m
reflector of Simeiz Observatory, equipped either with VersArray
F512 or with VersArray B1300 cameras (K100a, K100b).
The standard image reductions and photometry were made using IRAF.1
The galaxy background around SN 2011dh is quite smooth; nevertheless, we applied image subtraction for all of the frames obtained later than 2011 September 20. The template images were constructed from frames obtained at C60 while carrying out observations of SN 2005cs.
Magnitudes of the SN were derived by PSF fitting relative to a sequence of local standard stars. The image of SN 2011dh and comparison stars is shown in Fig. 1.
The magnitudes of these stars were taken from Pastorello et al. (2009). On images with larger field of view, we used several more distant comparison stars, also from Pastorello et al. (2009).
The results of our observations of the SN are presented in
Table 1. We did not detect significant variations of brightness in
the sequence of images obtained on June 1, so the averaged values,
calibrated by magnitudes, are reported in Table 1.
The light curves of SN 2011dh are shown in Fig. 2. The premaximum
rise and the main peak have good coverage by observations, and we
can determine the dates and magnitudes of maximum light in
different bands:
. After
the maximum, the brightness of the SN declined very fast. At the
phase of 15 days past maximum, the
magnitude declined by
1
64. The fast drop continued for about 21 days, and the onset
of the linear decline (K-point) is observed at about JD 2455753.
The rates of decline in the JD 2455780-2456010 time interval, in
mag/day, are: 0.016 in
, 0.020 in
, 0.019 in
, 0.021 in
.
Comparison to SN 2008ax (Pastorello et al. 2008; Tsvetkov et al.
2009) reveals a good match of the light curves at the main peak.
After the K-point, the agreement is good in the ,
and
bands, while in the
and
bands, the luminosity decline of
SN 2011dh is slower. In the
band, there is even a slight
increase of brightness after the K-point, and in the
band, a
protrusion on the light curve can be noticed.
![]() |
Fig. 3.
The light curves of SN 2011dh for the first
30 days past outburst. The color coding is the same as in Fig. 2,
but no magnitude shifts were applied. Observations in the |
Figure 3 shows the light curves for the first 30 days after the outburst. We plotted our data and the observations by Vinkó et al. (2012), Arcavi et al. (2011a), as well as results of amateur astronomers, taken from the "Latest supernovae" site.2
The last image of M51 with no SN visible (mag 18) was obtained
on JD 2455712.86, and the first detection was on JD 2455713.34. We
assume JD 2455712.9 to be the time of explosion. The initial flash
was very fast: the rise to the first peak with brightness of about
12
8 took only about 0
4, and after 2.6 days, a local
minimum was reached on JD 2455716, at
about 15
.
We compare the early light curves of SN 2011dh to those for SNe IIb 1993J and 2008ax (Richmond et al. 1996; Pastorello et al. 2008; Tsvetkov et al. 2009). The light curves were shifted in time to coincide at the estimated time of explosion, and the shift in magnitudes was applied to match the main peak brightness. The difference between the objects is evident: the initial peak for SN 1993J was the widest and strongest among these objects, while it was very weak for SN 2008ax .
![]() |
Fig. 4. The color curves of SN 2011dh. The blue and red lines are the color curves of SNe 1993J and 2008ax. |
The color curves are shown in Fig. 5. The evolution of the ,
, and
colors is similar. SN 2011dh quickly reddens till
the K-point and then becomes bluer. The
color remains nearly
constant after the K-point. A comparison to the type IIb SNe 1993J
and 2008ax reveals diversity of the color curves, both in shape
and the values of colors. A good match is observed only for the
and
colors between SNe 2011dh and 2008ax. SN 2011dh is
significantly redder in
and
than the other two
objects.
The absolute -magnitude light curves of SN 2008ax and several
SNe of types IIb, Ib, and Ic are compared in Fig. 5.
![]() |
Fig. 5.
The absolute |
For SN 2011dh, we adopted the distance of 8.4 Mpc
(Vinkó et al. 2012) and extinction . The light
curves of other SNe are taken from Richmond et al. (1996), Qiu et
al. (1999), Stritzinger et al. (2002), Foley et al. (2003),
Pastorello et al. (2008), Tsvetkov et al. (2009). With its
absolute peak
magnitude of
, SN 2011dh appears to
be quite typical among SNe of similar classes. It is a little
fainter than SNe IIb 1993J, 2008ax and SN Ib 1999ex, has nearly
the same luminosity as SN Ic 2002ap, and is significantly brighter
than SN IIb 1996cb.
We derived a quasi-bolometric light curve for SN 2011dh
integrating its flux in the bands. On the dates when
observations in some of the bands were missing, we used the color
curves to estimate the color of the SN at that date and then
calculated the missing magnitudes. We attempted to model the
quasi-bolometric light curve as well as the light curves in the
bands using our code STELLA, which incorporates implicit
hydrodynamics coupled to a time-dependent multi-group
non-equilibrium radiative transfer (Blinnikov et al. 1998). The
specific model employed here was Model 13C of Woosley et al.
(1994). This model was derived from a 13
main sequence
star that lost most of its hydrogen envelope to a nearby
companion. We present the results for 6 variants of the model with
different values of radius, explosion energy, and ejected mass,
which are reported in Table 2. The mass of
Ni was fixed at
0.07
. The results are presented in Figs. 6-9.
The influence of changing main parameters on the shape of
resulting light curve can be seen in Figs. 6,7. The reduction of
radius leads to shortening of the primary flash, but at the same
time it becomes weaker. Model 5 with increased energy of explosion
shows the worst agreement with observational data. Models 3, 4,
and 5 have a good agreement with the observed curve at late
stages. Figures 8,9 show the computed light curves for the
models 3 and 6, which fit the quasi-bolometric light curve
better. The main maximum in the
and
bands is reproduced
satisfactorily, but the computed duration of the initial flash is
longer, and its lumonosity is lower than observed. The agreement
in other bands is worse. We may conclude that, although our models
reproduce main features of the observed light curves, the
agreement is not satisfactory. We continue the search for models
which will give better fits. The results and more detailed
discussion of the properties of the models and their impact on the
possible evolution of the progenitor will be published in a
subsequent paper.
Acknowledgements. We thank N.P. Ikonnikova who made some of
the observations.
The work was supported partly by the grant of the Government of the Russian Federation (No. 11.G34.31.0047); by grants 10-02-00249a, 10-02-01398a, 11-02-01213a of the Russian Foundation for Basic Research; by the grants 3458.2010.2 and 3899.2010.2 from the Program of State Support to Leading Scientific Schools of Russia; by the grant IZ73Z0-128180/1 of the Swiss National Science Foundation (SCOPES); and by the SAIA scholarship (Slovakia).
References:
Arcavi I., Gal-Yam A., Polishook E. et al., 2011a, Astronomer's Telegram, No. 3413
Arcavi I., Gal-Yam A., Yaron O. et al., 2011b, Astrophys. J., 742, L18
Bietenholz M.F., Brunthaler A., Soderberg A.M. et al., 2012, Astrophys. J., 751, 125
Blinnikov S.I., Eastman R., Bartunov O.S., et al. 1998, Astrophys. J., 496, 454
Foley R.J., Papenkova M.S., Swift B.J. et al., 2003, PASP, 115, 1220
Krauss M.I., Soderberg A.M., Chomiuk L. et al., 2012, Astrophys. J., 750, L40
Li W., Filippenko A.V., 2011, Astronomer's Telegram, No.3399
Marti-Vidal I., Tudose V., Paragi Z. et al., 2011, Astron. Astrophys., 535, L10
Maund J.R., Fraser M., Ergon M. et al., 2011, Astrophys. J., 739, L37
Pastorello A., Kasliwal M.M., Crockett R.M. et al., 2008, MNRAS, 389, 955
Pastorello A., Valenti S., Zampieri L., et al., 2009, MNRAS, 394, 2266
Richmond M.W., Treffers R.R., Filippenko A.V., Paik Y., 1996, Astron. J., 112, 732
Soderberg A.M., Margutti R., Zauderer B.A. et al., 2012, Astrophys. J., 752, 78
Stritzinger M,, Hamuy M., Suntzeff N.B. et al., 2002, Astron. J., 124, 2100
Szczygiel D.M., Gerke J.R., Kochanek C.S., Stanek K.Z., 2012, Astrophys. J., 747, 23
Tsvetkov D.Yu., Volkov I.M., Baklanov P.V., et al., 2009, Variable Stars, 29, No. 2
Van Dyk S.D., Li W., Cenko S.B. et al., 2011, Astrophys. J., 741, L28
Vinkó J., Takáts K., Szalai T. et al., 2012, Astron. Astrophys., 540, 93
Woosley S.E., Eastman R.G., Weaver T.A., Pinto P.A., 1994, Astrophys. J., 429, 300
Qiu Y., Li W., Qiao Q., Hu J., 1999, Astron. J., 117, 736
![]() |
Fig. 6. The computed quasi-bolometric light curves for 6 models compared to the quasi-bolometric light curve of SN 2011dh (black dots). Day 0 is JD 2455712.9. |
![]() |
Fig. 8. The light curves for models 3 (solid lines) and 6 (dashed lines) in UBVRI bands compared to the observed light curves of SN 2011dh. |
![]() |
Fig. 9. Same as in Fig. 8, for the first 40 days past explosion. Observations of amateur astronomers are plotted as circles. |
Table 1. Observations of SN 2011dh
|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Tel. |
|
13.54 | 0.03 | C19 | ||||||||
5714.35 | 13.52 | 0.03 | C19 | ||||||||
5719.34 | 14.67 | 0.06 | 14.54 | 0.02 | 13.94 | 0.02 | 13.64 | 0.01 | 13.61 | 0.01 | M70 |
5723.37 | 13.85 | 0.04 | 13.79 | 0.02 | 13.17 | 0.02 | 12.89 | 0.01 | K100a | ||
5724.37 | 13.83 | 0.04 | 13.70 | 0.02 | 13.03 | 0.02 | 12.77 | 0.01 | K100a | ||
5725.31 | 13.65 | 0.04 | 13.60 | 0.02 | 12.92 | 0.02 | 12.65 | 0.01 | 12.56 | 0.01 | K100a |
5726.31 | 13.62 | 0.04 | 13.55 | 0.02 | 12.87 | 0.02 | 12.65 | 0.01 | 12.49 | 0.01 | K100a |
5727.28 | 13.60 | 0.04 | 13.53 | 0.02 | 12.79 | 0.02 | 12.51 | 0.01 | 12.40 | 0.01 | K100a |
5729.31 | 13.52 | 0.04 | 13.42 | 0.02 | 12.67 | 0.02 | 12.39 | 0.01 | 12.26 | 0.01 | K100a |
5730.31 | 13.53 | 0.04 | 13.42 | 0.02 | 12.64 | 0.02 | 12.34 | 0.01 | 12.22 | 0.01 | K100a |
5731.30 | 13.53 | 0.04 | 13.38 | 0.02 | 12.60 | 0.02 | 12.30 | 0.01 | 12.17 | 0.01 | K100a |
5731.32 | 13.49 | 0.07 | 13.32 | 0.02 | 12.60 | 0.02 | 12.31 | 0.01 | 12.17 | 0.01 | K100a |
5733.31 | 13.59 | 0.04 | 13.41 | 0.02 | 12.55 | 0.02 | 12.27 | 0.01 | 12.11 | 0.01 | K100a |
5734.29 | 13.66 | 0.04 | 13.42 | 0.02 | 12.55 | 0.02 | 12.21 | 0.01 | 12.07 | 0.01 | K100a |
5734.37 | 13.63 | 0.08 | 13.36 | 0.02 | 12.60 | 0.04 | 12.26 | 0.03 | 12.09 | 0.04 | C60 |
5735.27 | 13.76 | 0.04 | 13.48 | 0.02 | 12.57 | 0.02 | 12.22 | 0.01 | 12.06 | 0.01 | K100a |
5735.33 | 13.78 | 0.06 | 13.43 | 0.02 | 12.60 | 0.02 | 12.25 | 0.03 | 12.08 | 0.04 | C60 |
5736.28 | 13.90 | 0.04 | 13.59 | 0.02 | 12.61 | 0.02 | 12.24 | 0.01 | 12.07 | 0.01 | K100a |
5737.28 | 14.16 | 0.04 | 13.72 | 0.02 | 12.66 | 0.02 | 12.27 | 0.01 | 12.08 | 0.01 | K100a |
5741.28 | 15.15 | 0.05 | 14.28 | 0.02 | 13.00 | 0.02 | 12.49 | 0.01 | 12.25 | 0.01 | K100a |
5743.28 | 15.44 | 0.04 | 14.57 | 0.02 | 13.19 | 0.02 | 12.61 | 0.01 | 12.33 | 0.01 | K100a |
5744.32 | 15.71 | 0.05 | 14.79 | 0.02 | 13.27 | 0.02 | 12.67 | 0.01 | K100a | ||
5744.33 | 14.63 | 0.05 | 13.35 | 0.02 | 12.72 | 0.02 | 12.43 | 0.03 | C60 | ||
5746.28 | 15.95 | 0.04 | 14.89 | 0.02 | 13.41 | 0.02 | 12.79 | 0.01 | 12.47 | 0.01 | K100a |
5747.27 | 16.06 | 0.06 | 14.99 | 0.02 | 13.48 | 0.02 | 12.82 | 0.01 | 12.48 | 0.01 | K100a |
5749.30 | 16.36 | 0.12 | 15.07 | 0.02 | 13.59 | 0.02 | 12.91 | 0.01 | 12.57 | 0.01 | K100a |
5749.34 | 14.99 | 0.02 | 13.65 | 0.02 | 12.95 | 0.02 | 12.60 | 0.03 | C60 | ||
5750.29 | 16.37 | 0.11 | 15.11 | 0.02 | 13.64 | 0.02 | 12.96 | 0.01 | 12.62 | 0.01 | K100a |
5751.26 | 16.41 | 0.04 | 15.21 | 0.02 | 13.69 | 0.02 | 13.00 | 0.01 | 12.63 | 0.01 | K100a |
5752.35 | 16.46 | 0.04 | 15.24 | 0.02 | 13.75 | 0.02 | 13.05 | 0.01 | 12.67 | 0.01 | K100a |
5755.35 | 15.34 | 0.02 | 13.94 | 0.02 | 13.19 | 0.02 | 12.79 | 0.03 | C60 | ||
5757.34 | 15.31 | 0.04 | 14.00 | 0.02 | 13.26 | 0.02 | 12.84 | 0.02 | C60 | ||
5783.28 | 16.19 | 0.17 | 15.68 | 0.03 | 14.53 | 0.04 | 13.85 | 0.01 | 13.41 | 0.02 | C60 |
5786.31 | 15.66 | 0.03 | 14.60 | 0.04 | 13.91 | 0.02 | 13.48 | 0.02 | C60 | ||
5788.28 | 15.74 | 0.05 | 14.62 | 0.04 | 13.95 | 0.03 | 13.53 | 0.03 | C60 | ||
5789.26 | 15.69 | 0.03 | 14.64 | 0.02 | 13.97 | 0.02 | 13.55 | 0.03 | C60 | ||
5790.24 | 15.78 | 0.04 | 14.62 | 0.02 | 13.99 | 0.01 | 13.56 | 0.02 | C60 | ||
5808.24 | 15.94 | 0.02 | 14.98 | 0.02 | 14.39 | 0.02 | 13.99 | 0.02 | C60 | ||
5811.22 | 15.98 | 0.03 | 15.03 | 0.02 | 14.45 | 0.02 | 14.07 | 0.02 | C60 | ||
5817.22 | 16.01 | 0.03 | 15.16 | 0.02 | 14.62 | 0.02 | 14.07 | 0.03 | K100b | ||
5818.22 | 16.39 | 0.06 | 16.06 | 0.02 | 15.20 | 0.02 | 14.61 | 0.02 | 14.09 | 0.03 | K100b |
5819.21 | 16.71 | 0.07 | 16.10 | 0.02 | 15.23 | 0.01 | 14.66 | 0.01 | 14.10 | 0.03 | K100b |
5820.21 | 16.57 | 0.05 | 16.12 | 0.02 | 15.22 | 0.02 | 14.66 | 0.02 | 14.11 | 0.03 | K100b |
5821.21 | 16.62 | 0.08 | 16.08 | 0.02 | 15.22 | 0.02 | 14.68 | 0.02 | 14.13 | 0.03 | K100b |
5822.21 | 16.66 | 0.08 | 16.14 | 0.02 | 15.24 | 0.02 | 14.69 | 0.02 | 14.17 | 0.03 | K100b |
5823.24 | 16.70 | 0.09 | 16.15 | 0.02 | 15.27 | 0.02 | 14.73 | 0.03 | 14.16 | 0.02 | K100b |
5825.20 | 16.63 | 0.07 | 16.17 | 0.03 | 15.34 | 0.02 | 14.75 | 0.02 | 14.25 | 0.03 | K100b |
5830.21 | 16.82 | 0.37 | 16.24 | 0.03 | 15.41 | 0.04 | 14.85 | 0.04 | 14.37 | 0.05 | K60 |
5831.20 | 16.47 | 0.18 | 16.27 | 0.04 | 15.41 | 0.04 | 14.91 | 0.03 | 14.39 | 0.04 | K60 |
5832.20 | 16.88 | 0.12 | 16.32 | 0.04 | 15.46 | 0.04 | 14.90 | 0.04 | 14.45 | 0.04 | K60 |
5835.19 | 16.50 | 0.05 | 15.52 | 0.03 | 14.90 | 0.02 | K100a | ||||
5853.21 | 15.84 | 0.12 | 15.29 | 0.10 | 14.62 | 0.20 | S15 | ||||
5853.22 | 15.95 | 0.06 | 15.31 | 0.04 | S60 | ||||||
5854.22 | 15.92 | 0.06 | 15.48 | 0.04 | 14.97 | 0.12 | S60 | ||||
5856.20 | 15.82 | 0.13 | 15.43 | 0.09 | 14.87 | 0.07 | S15 | ||||
5856.21 | 16.77 | 0.06 | 15.96 | 0.05 | 15.42 | 0.04 | 14.97 | 0.10 | S60 | ||
5880.68 | 17.43 | 0.21 | 16.66 | 0.12 | 16.09 | 0.10 | S15 | ||||
5880.69 | 16.56 | 0.08 | S60 | ||||||||
5953.46 | 18.28 | 0.17 | 17.64 | 0.20 | 17.12 | 0.07 | 16.99 | 0.11 | M70 | ||
5955.66 | 18.45 | 0.05 | 18.22 | 0.06 | 17.29 | 0.04 | S60 | ||||
5987.58 | 17.91 | 0.07 | S60 | ||||||||
6022.39 | 19.44 | 0.12 | 18.35 | 0.04 | K100b | ||||||
|
Table 2. Model parameters
Model | Radius, ![]() |
Mass, ![]() |
Energy, 10![]() |
1 | 562 | 2.24 | 1.5 |
2 | 300 | 2.24 | 1.5 |
3 | 300 | 2.24 | 2.0 |
4 | 150 | 2.24 | 2.0 |
5 | 150 | 2.24 | 4.0 |
6 | 300 | 4.24 | 2.0 |