Peremennye Zvezdy

Article in PDF
"Peremennye Zvezdy",
Prilozhenie
,
vol. 20, N 3 (2020)

14 New Eclipsing Variables

A. V. Khruslov#1,2
#1. Sternberg Astronomical Institute, Lomonosov Moscow State University, Moscow, Russia;
#2. Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia.

ISSN 2221–0474 DOI: 10.24411/2221-0474-2020-10016

Received:   17.03.2020;   accepted:   22.12.2020
(E-mail for contact: khruslov@bk.ru)


#NameOtherCoord (J2000)TypeMaxMinSystemPeriodEpoch (JD)typeSpCommentL.CurveFind.ChartData
1 GSC 03695-0170102 27 49.01 +56 39 43.4EA10.7911.00V4.218572454000.650min Comm. 1lc_01.PNGch_10.PNGdt_a_01.txt dt_n_01.txt dt_w_01.txt
2 GSC 03699-0198602 37 11.20 +58 22 02.3EA13.3013.69V2.5446172457777.594min Comm. 2lc_02.PNGch_02.PNGdt_a_02.txt dt_n_02.txt dt_w_02.txt
3 GSC 03713-0064802 54 16.39 +58 30 25.1EA11.0111.14V2.3941442457778.69min Comm. 3lc_03.PNGch_03.PNGdt_a_03.txt dt_n_03.txt dt_w_03.txt
4 GSC 03709-0053902 54 24.96 +58 01 59.7EB11.4711.56V1.859592457777.74min Comm. 4lc_04.PNGch_04.PNGdt_a_04.txt dt_n_04.txt dt_w_04.txt
5 GSC 03331-0096304 05 17.67 +48 29 47.9ELL11.7911.86V5.169152457779.29min Comm. 5lc_05.PNGch_05.PNGdt_a_05.txt dt_n_05.txt dt_w_05.txt
6 USNO-B1.0 1371-012782704 28 22.67 +47 11 47.9EA14.8015.15V1.1939452457778.188min Comm. 6lc_06.PNGch_06.PNGdt_a_06.txt dt_w_06.txt
7 GSC 02897-0054904 47 34.83 +41 03 52.0ELL12.0612.11V0.5194152457777.357min Comm. 7lc_07.PNGch_07.PNGdt_a_07.txt dt_w_07.txt
8 GSC 02897-0098204 48 21.23 +39 39 21.2ELL11.7111.74V0.4565212457777.021min Comm. 8lc_08.PNGch_08.PNGdt_a_08.txt dt_w_08.txt
9 GSC 02898-0047904 53 43.01 +41 01 54.3EA10.3610.59V2.1877702457778.897min Comm. 9lc_09.PNGch_09.PNGdt_a_09.txt dt_n_09.txt dt_w_09.txt
10 GSC 02898-0198304 54 53.60 +39 52 11.7EA9.599.80V2.5929172457779.180min Comm. 10lc_10.PNGch_10.PNGdt_a_10.txt dt_n_10.txt dt_w_10.txt
11 GSC 02902-0318604 57 36.94 +42 23 15.8EA13.6314.24g185.192458465.9min Comm. 11lc_11.PNGch_11.PNGdt_a_11.txt dt_n_11.txt dt_w_11.txt
12 GSC 02397-0087905 06 35.04 +35 17 45.7EB10.1110.21V2.316622457778.36min Comm. 12lc_12.PNGch_12.PNGdt_a_12.txt dt_n_12.txt dt_w_12.txt
13 GSC 03345-0251405 11 49.75 +45 24 57.1EB11.5611.70V0.8382872457777.012min Comm. 13lc_13.PNGch_13.PNGdt_a_13.txt dt_n_13.txt dt_w_13.txt
14 GSC 00733-0126706 37 30.10 +08 15 16.5ELL11.9712.07V0.3290922457777.300min Comm. 14lc_14.PNGch_14.PNGdt_a_14.txt dt_n_14.txt dt_a3_14.txt

Comments:


1. D = 0.07 P. MinII = 10m.89 (V). From the 1SWASP data, 11m.08 – 11m.30, MinII = 11m.16; from the ROTSE-I/NSVS data, 11m.21 – 11m.43 (R), MinII = 11m.31 in the R band. J–K = 0.08 (2MASS).

2. D = 0.10 P. Total eclipse with duratioh d = 0.02 P is possible. MinII = 13m.35 (V). From the 1SWASP data, 13m.52 – 13m.93, MinII = 13m.57; from the ROTSE-I/NSVS data, 13m.25 – 13m.60 (R), MinII = 13m.31: in the R band. J–K = 0.43 (2MASS).

3. D = 0.09 P. MinII = 11m.135 (V). From the 1SWASP data, 11m.16 – 11m.30, MinII = 11m.28; from the ROTSE-I/NSVS data, 11m.16 – 11m.27, MinII = 11m.27 in the R band. J–K = 0.22 (2MASS).

4. Asymmetrical phases of maxima: 0.28 P for MaxI, 0.72 P for MaxII. MinII = 11m.52 (V). From the 1SWASP data, 11m.47 – 11m.55, MinII = 11m.52; from the ROTSE-I/NSVS data, 11m.31 – 11m.40, MinII = 11m.35 in the R band. J–K = 0.26 (2MASS).

5. MinII = 11m.855 (V). From the 1SWASP data, 12m.04 – 12m.11; from the ROTSE-I/NSVS data, 12m.05 – 12m.13 in the R band. J–K = 0.15 (2MASS).

6. D = 0.07 P. From the 1SWASP data, 15m.1 – 15m.5; J–K = 0.56 (2MASS).

7. MinII = 12.105 (V). From the 1SWASP data, 12m.26 – 12m.31, MinII = 12m.305; J–K = 0.33 (2MASS).

8. Period varies. Two systems of the light elements for two series of data. Elements for the ASAS-SN are given in table; from the 1SWASP the light elements are HJD(min) = 2454111.320 + 0.45648×E ; MinII = 11m.73 (V). From the 1SWASP data, 11m.91 – 11m.94, MinII = 11m.94. J–K = 0.24 (2MASS).

9. D = 0.10 P. MinII = 10m.38 (V). From the 1SWASP data, 10m.57 – 10m.80, MinII = 10m.60; from the ROTSE-I/NSVS data, 10m.80 – 11m.06, MinII = 10m.84 in the R band. J–K = 0.31 (2MASS). The reflection effect with amplitude 0m.04 is well visible in all series of observations.

10. D = 0.08 P. MinII = 9m.71 (V). From the 1SWASP data, 9m.76 – 9m.95, MinII = 9m.88; from the ROTSE-I/NSVS data, 9m.93 – 10m.12, MinII = 10m.07 in the R band. J–K = 0.23 (2MASS).

11. D = 0.06 P. MinII = 14m.12 (g). From the ASAS-SN data, V-band range 12m.85 – >13m.29 (V), phase 0.00 was not observed, MinII = 13m.35 (V). Blend of two stars in the NSVS and the 1SWASP data (distance 25"), amplitude is underestimated. From the 1SWASP data, 12m.65 – 13m.05, MinII = 12m.99; from the ROTSE-I/NSVS data, 12m.20 – 12m.68, MinII = 12m.60 in the R band. J–K = 0.93 (2MASS). Included in the ASAS-SN Catalog of Variable Stars I with type L.

12. Mean magnitudes of the ASAS-SN data for two cameras are shifted by 0m.1 to each other. The V-band range of the ba camera is given in the table, MinII = 10m.18 (V). Range of the bb camera 10m.21 – 10m.31, MinII = 10m.27 (V) in the ASAS-SN data. From the 1SWASP data, 10m.44 – 10m.54, MinII = 10m.50; from the ROTSE-I/NSVS data, 10m.50 – 10m.61, MinII = 10m.57 in the R band. The apsidal motion is possible. In the 1SWASP and the NSVS data phase of MinII is 0.545 (1SWASP) and 0.535 (NSVS), in the ASAS-SN data phase of MinII is 0.505 (cam bb) and 0.510 (cam ba). J–K = 0.09 (2MASS).

13. MinII = 11m.67 (V). From the 1SWASP data, 11m.60 – 11m.73, MinII = 11m.70; from the ROTSE-I/NSVS data, 11m.86 – 12m.00 in the R band. O'Connell effect: from the ASAS-SN data, MaxII = 11m.59 (V); from the 1SWASP, MaxII = 11m.64; J–K = 0.27 (2MASS).

14. MinII = 12m.07 (V). From the ROTSE-I/NSVS data, 12m.05 – 12m.15, MinII = 12m.14 in the R band. from the ASAS-3 data, 11m.92 – 12m.02 (V). J–K = 0.37 (2MASS).

Remarks:
I present a study of 14 new eclipsing variable stars. I analyzed all observations of these stars available in the Northern Sky Variability Survey (NSVS, Woźniak et al. 2004), Wide Angle Search for Planets (SuperWASP, Butters et al. 2010), All-Sky Automated Survey for Supernovae (ASAS-SN, Shappee et al. 2014 and Kochanek et al. 2017). For one of the cases I used data of the All Sky Automated Survey (ASAS-3, Pojmanski 2002).

The variability of most stars (No. 1-5 and 9-14) was suspected by J.S. Shaw and his colleagues in 2008. They described the project at a website. The authors searched for variability of the objects automatically in the NSVS data. I looked through the data available in untyped.cat. Shaw and coauthors list two possible periods for each star in this catolog. Detected periods for some stars are often incorrect. There are many cases of false variability (these stars were not confirmed with other available photometric data archives). Therefore, the suspected variables of the untyped.cat are not included in the ASAS and the VSX databases. The appendix for this paper provides the periods 1 and 2 of suspected variables according to the list from untyped.cat.

One star (No. 11) is included in the ASAS-SN Catalog of Variable Stars I (Jayasinghe et al. 2018) as an irregular variable (L-type).

These observations were analyzed using the period-search software developed by Dr. V.P. Goranskij. The coordinates were drawn from the Gaia DR2 catalog (Gaia Collaboration et al. 2018). All studied stars were not detected as a variables in Gaia DR2 project. The variables were classified according to the GCVS classification (Samus et al. 2017).

The SuperWASP observations are available as FITS tables, which were converted into ASCII tables using the OMC2ASCII program as described by Sokolovsky (2007).

The table photometric magnitudes are given according to ASAS-SN data (also, magnitude of MinII in Comments).

Appendix. Possible periods of the suspected variables according to J.S. Shaw and colaborators (see above).

No. P1, days P2, days
1 4.21649697 2.10776135
2 5.0930874 2.54292742
3 2.39467158 1.1973764
4 3.71987474 0.92951574
5 12.92821174 2.58447116
9 2.18699034 2.18736215
10 1.29633705 1.2966482
11 93.3874471 96.34513098
12 2.31682144 1.15893086
13 0.83800075 0.41898316
14 1.18178128 0.16451686


Acknowledgements: Thanks are due to Dr. K.V. Sokolovsky for his advice concerning data retrieving. The author wishes to thank Dr. V.P. Goranskij for providing his software.

References:
Butters, O.W., West, R.G., Anderson, D.R., et al., 2010, Astron. and Astrophys., 520, L10
Gaia Collaboration, Brown, A.G.A., Vallenari, A., et al., 2018, Astron. and Astrophys., 616, A1
Jayasinghe, T., Kochanek, C.S., Stanek, K.Z., et al., 2018, Mon. Not. Royal Astron. Soc., 477, 3145
Kochanek, C.S., Shappee, B.J., Stanek, K.Z., et al., 2017, Publ. Astron. Soc. Pacific, 129, 104502
Pojmanski, G., 2002, Acta Astron., 52, 397
Samus, N.N., Kazarovets, E.V., Durlevich, O.V., Kireeva, N.N., Pastukhova, E.N., 2017, General Catalogue of Variable Stars: Version GCVS 5.1, Astron. Rep., 61, No. 1, 80
Shappee, B.J., Prieto, J.L., Grupe, D., et al., 2014, Astrophys. J., 788, 48
Sokolovsky, K.V., 2007, Perem. Zvezdy Prilozh., 7, No. 30
Woźniak, P.R., Vestrand, W.T., Akerlof, C.W., et al., 2004, Astron. J., 127, 2436



Main Page | Search
Astronet | SAI | INASAN

Report problems