Peremennye Zvezdy

Peremennye Zvezdy (Variable Stars) 44, No. 3, 2024

Received 28 April; accepted 24 May.

Article in PDF

DOI: 10.24412/2221-0474-2024-44-28-41

Search for Evolutionary Period Changes in the Double-mode Cepheid V367 Sct

L. N. Berdnikov[1], A. A. Belinskii[1], A. K. Dambis [1], E. N. Pastukhova[2], M. A. Burlak[1], N. P. Ikonnikova[1], E. O. Mishin[1], N. I. Shatskii[1]

  1. Sternberg Astronomical Institute, Moscow State University, Universitetskij pr. 13, Moscow 119992, Russia; leonid.berdnikov@gmail.com

  2. Institute of Astronomy, Russian Academy of Sciences, ul. Pyatnitskaya 48, Moscow, 119017, Russia


For both periods of the bimodal Cepheid V367 Sct, O-C diagrams spanning a 113-year time interval are constructed. The O-C diagrams have the form of parabolas, allowing quadratic ephemerides and evolutionary period change rates to be determined for the first time, s/yr and s/yr, for the fundamental tone and first overtone of V367 Sct, respectively, which are consistent with the results of theoretical computations for the third crossing of the instability strip. The test for stability of pulsations proposed by Lombard and Koen confirmed the reality of the evolutionary change of the periods.

It follows from the computations performed by Eggenberger et al. (2021), Nguyen et al. (2022), and Yusof et al. (2022) that the evolutionary tracks of short-period Cepheids with periods shorter than 5 days (masses less than ) either have no blue loop after the first crossing of the instability strip or this loop does not reach the instability strip, which means that the second and third crossings do not occur. This means that all short-period Cepheids are observed at the first crossing.

According to the theory, the periods of Cepheids during the first crossing increase so rapidly that the O-C diagrams should be parabolas with steep upward branches. However, no steep parabolas, i.e. rapid evolutionary period changes, have been found in the O-C diagrams for 41 short-period Cepheids (hereafter referred to simply as Cepheids) studied over a time interval of more than a hundred years (Csoernyei et al., 2022). The O-C diagrams of such Cepheids look like small-amplitude semi-regular oscillations, which are sometimes superimposed onto a slight trend; if this trend is interpreted as a result of evolutionary period changes, then the rate of these changes formally corresponds to the second or third crossing of the instability strip (Turner et al., 2006).

As of now, rapid evolutionary period changes have been found only for three Cepheids. These are two normal Cepheids, V1033 Cyg and OGLE-LMC-CEP-2132 with the periods of and , respectively (Berdnikov et al., 2019, 2023) and one bimodal Cepheid, V371 Per, pulsating both in the fundamental tone and first overtone with the periods of and , respectively (Berdnikov et al., 2023). In order to understand how these three Cepheids differ from the others, first of all, it is necessary to increase the sample size, that is, to investigate period changes in unexplored Cepheids.

One of such objects is the bimodal Cepheid V367 Sct, and the aim of this study is to search for evolutionary changes of its pulsation periods.

1. LIGHT CURVES FOR BOTH OSCILLATIONS OF V367 Sct

From July 16 to October 10, 2021, we acquired 379 -band CCD frames for the bimodal Cepheid V367 Sct with the 60-cm telescope of the Caucasian Mountain Observatory of Sternberg Astronomical Institute of M.V.Lomonosov Moscow State University (Berdnikov et al., 2021). The method of constructing light curves (Fig. 1) for the fundamental mode ( ) and the first overtone ( ) is described by Berdnikov et al. (2021).

Table 1 lists the -band light-curve parameters for both oscillations of V367 Sct: magnitude at maximum light, amplitude, and intensity-mean magnitude. Table 2 lists the Fourier coefficients (for the cosine expansion). The Fourier coefficients for fall within the domains of classical (DCEP) Cepheids and those for , within the domain of low-amplitude Cepheids (DCEPS), which pulsate in the first overtone (Udalski et al., 2018).

2. TECHNIQUE OF STUDYING PERIOD CHANGES AND OBSERVATIONAL DATA USED

We investigate changes in Cepheid pulsation periods using the standard technique of the analysis of O-C diagram. The O-C residuals can be most accurately determined using the Hertzsprung method (Hertzsprung, 1919) whose computer implementation is described by Berdnikov (1992f). We use the method described by Lombard & Koen (1993) to confirm the reality of the period changes found.

To study the periods of V367 Sct, we compiled published photographic, photoelectric, CCD observations. We supplemented these data with our own eye estimates of the star's magnitudes on photographic plates of the Sternberg Astronomical Institute plate archive and with ASAS-3 (Pojmanski, 2002) and ASAS-SN (Jayasinghe et al., 2019) survey photometry.

Table 3 summarizes information about the number of observations used. These observations span a 113-year time interval.

3. RESULTS AND DISCUSSION

We use the method described by Berdnikov et al. (2021) to extract the light curves corresponding to the fundamental mode and first overtone from observations of V367 Sct (Fig. 1). We computed seasonal light curves based on the data obtained; Table 4 summarizes the results of their analysis performed using the Hertzsprung method. The first and second columns of this table give the times of maximum light and their errors; the third column gives the type of observations; the fourth and fifth columns present the epoch number and the O-C residual, respectively; the sixth and seventh columns are the number of observations and the source of data, respectively. The data from Table 4 are shown in the O-C diagrams (Figs. 2 and 3 for the fundamental mode and first overtone, respectively) as squares for photographic observations and small filled circles for other observations, with vertical error bars of O-C residuals.

The O-C diagrams have the form of parabolas. Based on the times of maximum light from Table 4, we inferred the quadratic ephemerides listed in Table 5, which we use to draw the parabolas in the top panels of Figs. 2 and`3. The bottom panels of these figures show the residuals from these parabolas. We use the linear parts of these ephemerides to compute the O-C residuals in the fifth column of Table 4.

We use the data from Table 4 to compute the differences between the times of maximum light in the band (and also in photographic, pg, magnitudes whose photometric system is close to that of the band), and and bands relative to the band; the corresponding corrections are listed in Table 6. We used these corrections when drawing Figs. 2 and 3 and computing the ephemerides (Table 5), which therefore apply to the -band variations.

We use the method published by Lombard and Koen (1993) to confirm the reality of the changes in the pulsation period. To this end, we compute the differences of consecutive O-C residuals from Table 4, , and plot the dependences of on for both oscillations of V367 Sct (Figs. 4 and 5). The values, which have the meaning of average period in the epoch interval -, correspond to the behavior of the O-C residuals in Figs. 2 and 3, and hence the period increases found are real.

The quadratic terms (Table 5) allow us to compute the rates of evolutionary period increase for the fundamental tone and first overtone of V367 Sct, which are listed in the fifth column of Table 5. These period increase rates are consistent with theoretical computations for the third crossing of the instability strip (Turner et al., 2006; Fadeyev, 2014).

4. Conclusions

To study the period changes of the bimodal Cepheid V367 Sct, we acquired 379 CCD frames in filters with the 60-cm telescope of Caucasian Mountain Observatory and made 282 magnitude estimates on photographic plates of Sternberg Astronomical Institute (Moscow); in addition, we compiled 4329 published photometric observations. We used the Hertzsprung method to determine 203 times of maximum light for both oscillations, which allowed us to construct O-C diagrams spanning a 113-year time interval. The O-C diagrams have the form of parabolas, which allowed us, for the first time, to determine the quadratic ephemerides and to compute the rates of evolutionary period changes: s/year and s/yr for the fundamental tone and the first overtone of V367 Sct, respectively, which is consistent with the theoretical results for the third crossing of the instability strip. The pulsation stability test proposed by Lombard & Koen (1993) confirmed that the increase of periods was real.

Acknowledgments

This study was made using equipment acquired within the framework of the Development Program of M.V. Lomonosov Moscow State University.

References:

Arellano Ferro, A., Rojo Arellano, E., Gonzáles-Bedolla, S., & Rosenzweig, P., 1998, Astrophys. J. Suppl. Ser., 117, 167

Berdnikov, L. N., 1986, Variable Stars, 22, 369

Berdnikov, L. N., 1992a, Astron. & Astrophys. Trans., 2, 1

Berdnikov, L.N., 1992b, Astron. & Astrophys. Trans., 2, 43

Berdnikov, L.N., 1992c, Astron. & Astrophys. Trans., 2, 107

Berdnikov, L.N., 1992d, Astron. & Astrophys. Trans., 2, 157

Berdnikov, L. N., 1992e, Sov. Astron. Letters, 18, 130

Berdnikov, L. N., 1992f, Sov. Astron. Letters, 18, 207

Berdnikov, L. N. & Caldwell, J. A. R., 2001, J. Astron. Data, 7, No. 3

Berdnikov, L. N. & Ibragimov, M. A., 1994a, Astron. & Astrophys. Trans., 5, 317

Berdnikov, L. N. & Ibragimov, M. A., 1994b, Inform. Bull. Var. Stars, No. 3991, 1

Berdnikov, L. N. & Turner, D. G., 1995a, Astron. Lett., 21, 534

Berdnikov, L. N. & Turner, D. G., 1995b, Astron. Lett., 21, 717

Berdnikov, L. N. & Turner, D. G., 1998a, Astron. & Astrophys. Trans., 16, 205

Berdnikov, L. N. & Turner, D. G., 1998b, Astron. & Astrophys. Trans., 16, 291

Berdnikov, L. N. & Turner, D. G., 2000, Astron. & Astrophys. Trans., 18, 679

Berdnikov, L. N. & Turner, D. G., 2001, Astron. & Astrophys. Trans., 19, 689

Berdnikov, L. N., Kniazev, A.`Yu., Dambis, A. K., & Kravtsov, V. V., 2019, Variable Stars, 39, No. 1

Berdnikov, L. N., Belinskij, A. A., Pastukhova, E. N., et al., 2021, Variable Stars, 41, No. 2, 1

Berdnikov, L. N., Belinskij, A. A., Pastukhova, E. N., et al., 2023, Astron. Letters, 49, in press

Berdnikov, L. N., Belinskij, A. A., Shatskij, N. I., et al., 2020, Astron. Reports, 64, 310

Berdnikov, L. N., Ignatova, V. V., & Vozyakova, O. V., 1997, Astron. & Astrophys. Trans., 14, 237

Berdnikov, L. N., Ignatova, V. V., & Vozyakova, O. V., 1998, Astron. & Astrophys. Trans., 17, 87

Berdnikov, L. N., Pastukhova, E. N., Kovtyukh, V. V., et al., 2019, Astron. Letters, 45, 229

Berdnikov, L. N., Vozyakova, O. V., & Ibragimov, M. A., 1995, Inform. Bull. Var. Stars, No. 4141, 1

Csoernyei, G., Szabados, L., Molnar, L., et al., 2022, Mon. Notices Roy. Astron. Soc., 511, 2155

Dean, J. F., 1977, Mon. Not. Astron. Soc. South Africa, 36, 3

Efremov, Yu. N. & Kholopov, P. N., 1975, Variable Stars, 20, 133

Eggenberger, P., Ekstrom, S., Georgy, C., et al., 2021, Astron. & Astrophys., 652, A137

Fadeyev, Yu. A., 2014, Astron. Letters, 40, 301

Hertzsprung, E., 1919, Astron. Nachr., 208, 51

Ignatova, V. V. & Vozyakova, O. V., 2000, Astron. & Astrophys. Trans., 19, 133

Jayasinghe, T., Kochanek, C. S., Stanek, K. Z., et al., 2019, Mon. Notices Roy. Astron. Soc., 485, 961

Lombard, F. & Koen, Ch., 1993, Mon. Notices Roy. Astron. Soc., 263, 309

Madore, B. F., Stobie, B. F., & van den Bergh, S., 1978, Mon. Notices Roy. Astron. Soc., 183, 13

Madore, B. F. & van den Bergh, S., 1975, Astrophys. J., 197, 55

Moffett, T. J. & Barnes, T. G., 1984, Astrophys. J. Suppl. Ser., 55, 389

Nguyen, C. T., Costa, G., Girardi, L. et al., 2022, arXiv:2207.08642v1

Pojmanski, G., 2002, Acta Astron., 52, 397

Roslund, C. & Pretorius, W., 1962, Arkiv Astron., 3, 201

Turner, D. G., Abdel-Sabour Abdel-Latif, M., & Berdnikov, L. N., 2006, Publ. Astron. Soc. Pacif., 118, 410

Udalski, A., Soszynski, I., Pietrukowicz, P., et al., 2018, Acta Astron., 68, 315

Yusof, N., Hirschi, R., Eggenberger, P., et al., 2022, Mon. Notices Roy. Astron. Soc., 511, 2814

Fig. 1. Phased , , , and light curves for both oscillations of V367 Sct.

Fig. 2. The O-C diagram for V367 Sct for linear (top panel) and quadratic (bottom panel) ephemeris of the fundamental tone (Table 5). The curve shows the parabola corresponding to the ephemeris (Table 5). Symbols are explained in the text.

Fig. 3. The O-C diagram for V367 Sct for linear (top panel) and quadratic (bottom panel) ephemeris of the first overtone (Table 5). The curve shows the parabola corresponding to the ephemeris (Table 5). Symbols are explained in the text.

Fig. 4. The dependence of on for the fundamental tone. The line corresponds to the behavior of residuals in Fig. 2.

Fig. 5. The dependence of on for the first overtone. The line corresponds to the behavior of O-C residuals in Fig. 3.



Table 1. Parameters of -, -, -, and -band light curves of both oscillations of V367 Sct

Oscillation mode Filter Magnitude at Amplitude Intensity-mean
maximum light magnitude
Fundamental mode 13.117 0.531 13.385
Fundamental mode 11.433 0.379 11.618
Fundamental mode 12.292 0.438 12.505
Fundamental mode 10.551 0.303 10.704
First overtone 13.225 0.352 13.385
First overtone 11.486 0.244 11.618
First overtone 12.346 0.288 12.505
First overtone 10.607 0.201 10.704



Table 2. Fourier coefficients (cosine expansion) of the -, -, -, and -band light curves of the fundamental mode ( ) and first overtone ( ) of V367 Sct.

Oscillation Filter
mode Error Error Error Error Error Error
Fundamental mode 0.11100 0.02040 0.01350 4.27050 2.29911 4.09857
Fundamental mode 0.15596 0.03487 0.01320 4.48043 2.36722 6.24081
Fundamental mode 0.16781 0.00839 0.02262 4.22781 1.72122 0.12706
First overtone 0.03281 0.00873 0.00002 5.40537 3.85542 2.34633
First overtone 0.12838 0.00423 0.00188 3.74491 1.48809 1.90353
First overtone 0.08753 0.00652 0.00015 3.66465 3.60980 2.29634
First overtone 0.03161 0.01210 0.02313 0.61989 2.03573 3.30126



Table 3. Observational data for V367 Sct.

Data source Number of Type of JD interval
observations observations
Caucasian Mountain Observatory (this paper) 379 CCD, 2459403-2459438
Sternberg Astronomical Institute (this paper) 282 Photographic, pg 2432826-2448179
Published 314 Photographic, pg 2418529-2441926
Published 860 Photoelectric, 2437549-2453118
ASAS-3 223 CCD, 2452135-2453228
ASAS-SN 2932 CCD, 2457061-2460044



Table 4. Times of maximum light for V367 Sct

Maximum, HJD Error, days Filter E O - C, days N Reference

V367 Sct-Fu

2424718.3580
0.0656 pg 58 Efremov, Kholopov (1975)
2429752.9944 0.1084 pg 35 Efremov, Kholopov (1975)
2433277.1252 0.0949 pg 22 Sternberg Astronomical Institute
2433295.9548 0.1011 pg 22 Efremov, Kholopov (1975)
2437707.3317 0.0315 25 Roslund, Pretorius (1962)
2437713.6682 0.0351 24 Roslund, Pretorius (1962)
2438896.7396 0.0446 pg 57 Efremov, Kholopov (1975)
2439035.2246 0.0469 pg 78 Sternberg Astronomical Institute
2440344.1875 0.0396 pg 75 Efremov, Kholopov (1975)
2440709.2236 0.0334 pg 71 Sternberg Astronomical Institute
2441244.1650 0.0518 pg 45 Efremov, Kholopov (1975)
2441665.7087 0.0586 pg 35 Efremov, Kholopov (1975)
2441772.7581 0.0353 pg 81 Sternberg Astronomical Institute
2442055.9425 0.0362 37 Madore, van den Bergh (1975)
2442062.1848 0.0447 36 Madore, van den Bergh (1975)
2442515.3697 0.0322 54 Madore et al. (1978)
2444346.7675 0.0243 124 Moffett, Barnes (1984)
2444365.6087 0.0118 44 Moffett, Barnes (1984)
2445699.7099 0.0165 50 Berdnikov (1986)
2446618.5607 0.0315 27 Berdnikov (1992a)
2446618.5714 0.0234 27 Berdnikov (1992a)
2447417.7103 0.0196 30 Berdnikov (1992b)
2447417.7136 0.0264 30 Berdnikov (1992b)
2447757.5945 0.0118 41 Berdnikov (1992c)
2447757.6289 0.0101 41 Berdnikov (1992c)
2447864.4644 0.0617 pg 30 Sternberg Astronomical Institute
2448116.2532 0.0267 38 Berdnikov (1992d)
2448116.3004 0.0212 19 Berdnikov (1992d)
2448512.8153 0.0284 31 Berdnikov (1992e)
2448512.8284 0.0137 62 Berdnikov (1992e)
2448877.8204 0.0052 824 Berdnikov, Ibragimov (1994a)
2448877.8671 0.0130 83 Berdnikov, Ibragimov (1994a)
2449129.5138 0.0670 45 Arellano Ferro et al. (1998)
2449223.9098 0.0123 50 Berdnikov, Ibragimov (1994b)
2449223.9571 0.0108 98 Berdnikov, Ibragimov (1994b)
2449538.5617 0.0663 10 Berdnikov, Turner (1995a)
2449544.9139 0.0098 164 Berdnikov et al. (1995)
2449551.2100 0.0122 83 Berdnikov et al. (1995)
2449815.4734 0.0527 15 Berdnikov, Turner (1995b)
2449815.5299 0.0644 15 Berdnikov, Turner (1995b)
2449947.6206 0.0271 56 Berdnikov et al. (1997)
2449960.2264 0.0525 23 Berdnikov et al. (1997)
2450325.2512 0.0224 33 Berdnikov et al. (1998)
2450325.2634 0.0136 133 Berdnikov et al. (1998)
2450369.2132 0.0132 28 Berdnikov, Turner (1998a)
2450369.2757 0.0162 28 Berdnikov, Turner (1998a)
2450577.0441 0.0185 35 Berdnikov, Turner (1998b)
2450809.9265 0.0225 45 Ignatova, Vozyakova (2000)
2450816.1151 0.0302 44 Ignatova, Vozyakova (2000)
2450904.1837 0.0210 94 Berdnikov, Turner (2000)
2450904.2879 0.0271 48 Berdnikov, Turner (2000)
2451269.2451 0.0352 23 Berdnikov, Turner (2001)
2451653.1203 0.0108 21 Berdnikov, Caldwell (2001)
2451653.1456 0.0256 42 Berdnikov, Caldwell (2001)
2452074.7521 0.0155 54 ASAS
2452414.5353 0.0282 50 ASAS

Table 4. Continued

Maximum, HJD
Error, days Filter E O - C, days N Reference

V367 Sct-Fu

2452704.0885
0.0190 66 Berdnikov et al. (2019)
2452704.1182 0.0191 48 ASAS
2453031.3463 0.0198 59 ASAS
2457172.3183 0.0037 110 ASAS-SN
2457543.6319 0.0035 99 ASAS-SN
2457575.1390 0.0072 60 ASAS-SN
2457795.3714 0.0083 60 ASAS-SN
2457927.5295 0.0028 154 ASAS-SN
2458009.3293 0.0083 60 ASAS-SN
2458254.7019 0.0083 62 ASAS-SN
2458311.4215 0.0035 120 ASAS-SN
2458336.4655 0.0130 60 ASAS-SN
2458399.3794 0.0093 59 ASAS-SN
2458525.2606 0.0105 55 ASAS-SN
2458613.3781 0.0112 60 ASAS-SN
2458619.6996 0.0076 70 ASAS-SN
2458625.9558 0.0110 55 ASAS-SN
2458669.9773 0.0129 74 ASAS-SN
2458695.2601 0.0240 59 ASAS-SN
2458714.0785 0.0070 60 ASAS-SN
2458764.4038 0.0078 70 ASAS-SN
2458764.4232 0.0093 54 ASAS-SN
2458865.1417 0.0135 59 ASAS-SN
2459016.1705 0.0095 69 ASAS-SN
2459060.1976 0.0094 74 ASAS-SN
2459097.9658 0.0062 70 ASAS-SN
2459135.7134 0.0098 60 ASAS-SN
2459204.9781 0.0186 58 ASAS-SN
2459223.7966 0.0075 55 ASAS-SN
2459362.2602 0.0079 69 ASAS-SN
2459362.2899 0.0085 84 ASAS-SN
2459362.3011 0.0138 60 ASAS-SN
2459412.5887 0.0106 55 ASAS-SN
2459418.9106 0.0174 60 ASAS-SN
2459425.2103 0.0121 54 ASAS-SN
2459437.8389 0.0212 93 Sternberg Astronomical Institute
2459438.0193 0.0153 95 Sternberg Astronomical Institute
2459444.2310 0.0096 91 Sternberg Astronomical Institute
2459569.9590 0.0125 56 ASAS-SN
2459576.2545 0.0073 70 ASAS-SN
2459595.1616 0.0216 60 ASAS-SN
2459607.7585 0.0138 66 ASAS-SN
2459645.4690 0.0089 65 ASAS-SN
2459802.7950 0.0158 57 ASAS-SN
2459809.1282 0.0082 73 ASAS-SN
2459853.1872 0.0111 68 ASAS-SN
2459872.0948 0.0111 72 ASAS-SN
2459878.3109 0.0111 61 ASAS-SN

V367 Sct-1O

2424465.1663
0.0778 pg 53 Efremov, Kholopov (1975)
2430077.6886 0.0999 pg 29 Efremov, Kholopov (1975)
2433278.3314 0.0630 pg 22 Sternberg Astronomical Institute
2433295.8936 0.0844 pg 22 Efremov, Kholopov (1975)
2437702.5100 0.0354 25 Roslund, Pretorius (1962)
2437742.2970 0.0297 20 Roslund, Pretorius (1962)
2439031.1910 0.0379 pg 77 Sternberg Astronomical Institute
2439044.1764 0.0342 pg 70 Efremov, Kholopov (1975)
2440649.0281 0.0495 pg 71 Efremov, Kholopov (1975)
2440706.0701 0.0321 pg 71 Sternberg Astronomical Institute
2441477.8078 0.0418 pg 67 Efremov, Kholopov (1975)
2441771.5517 0.0328 pg 81 Sternberg Astronomical Institute
2442052.0901 0.0361 37 Madore, van den Bergh (1975)
2442056.4832 0.0456 36 Madore, van den Bergh (1975)
2442442.3659 0.0771 54 Madore, van den Bergh (1975)
2442468.6626 0.0373 31 Madore et al. (1978)
2442951.1169 0.0722 8 Dean (1977)
2442951.2034 0.0464 8 Dean (1977)
2444358.5741 0.0202 118 Moffett, Barnes (1984)
2444362.9616 0.0135 44 Moffett, Barnes (1984)
2445695.7986 0.0172 50 Berdnikov (1986)
2445695.9764 0.0574 23 Berdnikov (1986)
2446621.1122 0.0283 27 Berdnikov (1992a)
2446621.1396 0.0260 27 Berdnikov (1992a)

Table 4. Continued

Maximum, HJD
Error, days Filter E O - C, days N Reference

V367 Sct-1O

2447419.1307
0.0294 30 Berdnikov (1992b)
2447419.1368 0.0166 30 Berdnikov (1992b)
2447756.7685 0.0109 41 Berdnikov (1992c)
2447756.7889 0.0118 41 Berdnikov (1992c)
2447861.9297 0.0377 30 Sternberg Astronomical Institute
2448111.9421 0.0270 38 Berdnikov (1992d)
2448112.0003 0.0232 19 Berdnikov (1992d)
2448510.8983 0.0309 62 Berdnikov (1992e)
2448510.9268 0.0110 31 Berdnikov (1992e)
2448879.2528 0.0154 83 Berdnikov, Ibragimov (1994a)
2448879.2664 0.0044 823 Berdnikov, Ibragimov (1994a)
2449133.4953 0.0611 47 Arellano Ferro et al. (1998)
2449133.6899 0.0450 59 Arellano Ferro et al. (1998)
2449221.3067 0.0283 50 Berdnikov, Ibragimov (1994b)
2449221.3502 0.0078 98 Berdnikov, Ibragimov (1994b)
2449545.7154 0.0098 164 Berdnikov et al. (1995)
2449545.7869 0.0135 83 Berdnikov et al. (1995)
2449817.4896 0.0214 15 Berdnikov, Turner (1995b)
2449949.1196 0.0066 56 Berdnikov et al. (1997)
2449962.2720 0.0384 23 Berdnikov et al. (1997)
2450321.8331 0.0152 133 Berdnikov et al. (1998)
2450321.8959 0.0296 33 Berdnikov et al. (1998)
2450370.0671 0.0217 28 Berdnikov, Turner (1998a)
2450370.1146 0.0216 28 Berdnikov, Turner (1998a)
2450576.2106 0.0143 35 Berdnikov, Turner (1998b)
2450812.9499 0.0347 45 Ignatova, Vozyakova (2000)
2450813.0184 0.0300 45 Ignatova, Vozyakova (2000)
2450905.0017 0.0156 94 Berdnikov, Turner (2000)
2450905.2123 0.0108 48 Berdnikov, Turner (2000)
2451273.2650 0.0364 23 Berdnikov, Turner (2001)
2451655.0424 0.0299 21 Berdnikov, Caldwell (2001)
2451655.0956 0.0200 42 Berdnikov, Caldwell (2001)
2452128.4385 0.0219 71 ASAS
2452374.1251 0.0498 18 Berdnikov et al. (2019)
2452584.3868 0.0179 83 ASAS
2452702.9445 0.0220 66 Berdnikov et al. (2019)
2453027.2664 0.0272 61 ASAS
2457175.3384 0.0032 110 ASAS-SN
2457543.6916 0.0046 99 ASAS-SN
2457578.8474 0.0096 60 ASAS-SN
2457798.0453 0.0108 60 ASAS-SN
2457929.5932 0.0028 154 ASAS-SN
2458012.8846 0.0125 60 ASAS-SN
2458253.9979 0.0137 62 ASAS-SN
2458306.6982 0.0041 120 ASAS-SN
2458398.7412 0.0078 59 ASAS-SN
2458438.2560 0.0122 100 ASAS-SN
2458547.9484 0.0091 80 ASAS-SN
2458622.4468 0.0046 70 ASAS-SN
2458675.0362 0.0125 69 ASAS-SN
2458692.5485 0.0108 60 ASAS-SN
2458710.1785 0.0148 79 ASAS-SN
2458727.6876 0.0108 100 ASAS-SN
2458767.1457 0.0044 70 ASAS-SN
2458859.1765 0.0114 58 ASAS-SN
2459017.0831 0.0064 70 ASAS-SN
2459060.9275 0.0125 71 ASAS-SN
2459205.5950 0.0121 58 ASAS-SN
2459227.5498 0.0039 137 ASAS-SN
2459240.7298 0.0105 79 ASAS-SN
2459328.3894 0.0152 100 ASAS-SN
2459359.1290 0.0127 73 ASAS-SN
2459433.5973 0.0109 57 ASAS-SN
2459442.4081 0.0157 93 Sternberg Astronomical Institute
2459442.4219 0.0060 91 Sternberg Astronomical Institute
2459442.4360 0.0231 95 Sternberg Astronomical Institute
2459464.3326 0.0138 100 ASAS-SN
2459530.1323 0.0088 80 ASAS-SN
2459573.9479 0.0065 70 ASAS-SN
2459587.0331 0.0118 54 ASAS-SN
2459731.8671 0.0116 143 ASAS-SN
2459810.6978 0.0183 52 ASAS-SN
2459810.7060 0.0074 71 ASAS-SN
2459823.9061 0.0124 88 ASAS-SN
2459845.8942 0.0164 78 ASAS-SN



Table 5. Quadratic ephemerides in the form for the fundamental mode and first overtone of V367 Sct and period change rates

Oscillation mode HJD , days , days , s/yr
Error Error Error Error
Fundamental tone 2442301.4091 6.293177564 0.2334
First overtone 2442157.4263 4.384747197 0.2445



Table 6. Differences between the times of maximum light in the - and -band filters relative to the -band filter for the fundamental mode and first overtone of V367 Sct

Oscillation mode , days , days
Error Error
Fundamental tone
First overtone





Main Page | Search
Astronet | SAI | INASAN

Report problems