Peremennye Zvezdy (Variable Stars) 44, No. 4, 2024 Received 11 June; accepted 18 June. |
Article in PDF |
DOI: 10.24412/2221-0474-2024-44-42-49
|
Sternberg Astronomical Institute, Moscow University, Universitetsky Ave., 13, 119992 Moscow, Russia
This study presents parameters of several poorly studied eclipsing variable stars with elliptical orbits. The data were obtained from solution of our own long-term photometric observations. |
The main goal of this work is to study the internal structure of stars. One of the ways of solving the problem is to measure the rotation speed of the apsidal line from observations of eclipsing stars with elliptical orbits. The rotation periods of the apsidal line can reach tens of thousands of years, and thus long series of observations of each star are required. In particular, our work has been going on for 35 years. Here we present a summary of our study.
The beginning of this study was first announced by Volkov and Volkova (2009), where the method of object selection was also described. The basis was the list of mainly northern stars obtained by Otero et al. (2006) from observations of ROTSE, ASAS, and Hipparcos. A number of stars were also selected that had previously avoided attention of observers due to difficulties of their observations: periods that are multiples of a day; eclipsing stars that are components of visual binary stars, etc.
We carried out observations with the 1.25-m and 60-cm reflectors at the Crimean Observatory of Sternberg institute; Zeiss-600 and Zeiss-1000 telescopes in the Simeiz INASAN observatory; 70-cm reflector of Moscow observatory of Sternberg Institute; 50-cm and 60-cm reflectors of Stará Lesná observatory, Slovakia. We mainly used CCD cameras, such as VersArray-512UV, VersArray-1300, ST-10XME, FLI PL09000; some others were also used, but not often. Observations were fulfilled in the Johnson-Cousins system. For bright stars, a photometer designed by I.M. Volkov, with an EMI9789 photomultiplier, was used (Volkov and Volkova, 2007).
The methods of our observations are described in detail in earlier publications: Barabanov et al. (2021), Burlak et al. (2018), Volkov et al. (2021). Methods for processing observations and determining the relative and physical parameters of the systems are given in Volkov et al. (2010), Volkov et al. (2011), Bagaev et al. (2018).
Stellar temperatures were determined using Flower (1996) and Popper (1980) color index calibrations. Stellar magnitudes in the system were determined by normalizing to standards from Kornilov et al. (1991), Moffett & Barnes (1979).
Table 1 presents the main observational parameters of the stars under study. Interstellar reddening was determined from our photometry. If there is an asterisk, the interstellar reddening was determined from the survey by Green et al. (2015).
The , , , color indices corrected for interstellar reddening allowed us to determine spectral types of the components of eclipsing stars. In Table 1, we present only the index as the most important one. The data in this Table are accurate to one half of the last significant digit.
Modern ephemeris of eclipsing stars given in Table 1 allow observers to pre-calculate minima with a high accuracy.
Star | V | B – V | E(B – V) | Spectrum | Epoch | Period | Φ II |
HJD 2400000.0+ |
|||||||
V871 Aql | 12.51 | 1.06 | 1.19 | B6V+B6V | 52500.0229 | 2.952641 | 0.4451 |
V889 Aql | 8.575 | 0.210 | 0.202 | B9.5V+A0V | 59060.3949 | 11.120760 | 0.3538 |
V645 Aur | 9.72 | 0.01 | 0.11 | B8V+B8V | 52977.7382 | 10.8925082 | 0.7893 |
OO Cam | 10.48 | 0.21 | 0.30 | B8V+A0V: | 55873.6014 | 8.1190455 | 0.4892 |
V347 Cam | 10.96 | 0.26 | 0.09 | A6IV+A6V | 55314.4168 | 9.4545582 | 0.6944 |
V361 Cam | 10.81 | -0.06 | 0.10 | B3IV+B9.5V | 58561.2482 | 8.6385638 | 0.4727 |
V409 Cam | 10.71 | 0.47 | 0.13 | F0V+A9IV | 57800.4846 | 6.676482 | 0.5231 |
V422 Cam | 11.10 | 0.62 | 0.11 | G0V+G1V | 57803.3008 | 17.8705606 | 0.4904 |
V498 Cam | 11.64 | 0.57 | 0.04 | F7V+F7V | 57795.3229 | 12.1102647 | 0.5653 |
KX Cnc | 7.20 | 0.585 | 0.00 | F9V+G0V | 54162.7372 | 31.2198585 | 0.6432 |
DR CMi | 11.06 | 0.13 | 0.0 | A5IV | 56644.5759 | 23.770030 | 0.6685 |
V1066 Cas | 10.81 | 0.28 | 0.29 | A3IV+A0V | 58896.2402 | 8.4649440 | 0.5564 |
V1110 Cas | 10.33 | 0.69 | 0.24 | F5+F5: | 58958.34515 | 24.849451 | 0.7063 |
V1141 Cas | 11.93 | 0.19 | 0.49 | B2V+B3V | 59129.2382 | 6.9094135 | 0.4550 |
V1162 Cas | 10.72 | 0.43 | 0.2? | A0+A2: | 59159.5948 | 29.0674505 | 0.2299 |
V750 Cep | 11.26 | 0.68 | 0.76 | B9V+A5V | 58886.3278 | 18.8821656 | 0.438 |
V850 Cep | 9.98 | 0.38 | 0.23 | A0 | 51475.7273 | 12.914975 | 0.590 |
V880 Cep | 10.27 | 0.28 | 0.32 | A0V+A1V | 58655.4035 | 27.330125 | 0.539 |
V897 Cep | 11.44 | 0.71 | 0.3? | KIII: | 56235.5138 | 4.4871945 | 0.5118 |
V898 Cep | 12.14 | 0.78 | 0.88 | B9V+B9V? | 55481.3576 | 2.8747704 | 0.6684 |
V921 Cep | 11.69 | 0.87 | 0.61 | F0IV+A8IV | 58347.5032 | 13.7146644 | 0.4312 |
V922 Cep | 11.41 | 0.42 | 0.5 | B7V+B7V | 55878.7002 | 3.57497303 | 0.5839 |
V944 Cep | 10.92 | 0.95 | 1.03 | B8V+B9V | 58773.3625 | 6.56005423 | 0.5070 |
V1326 Cyg | 11.44 | 0.22 | 0.23 | B8V+B8V | 55073.5052 | 16.681735 | 0.5302 |
V2544 Cyg | 12.76 | 1.49 | 1.73 | B2V+B2V | 57927.3549 | 2.09381 | 0.5342 |
NS Dra | 11.34 | 0.95 | 0.00 | G5IV+K1III | 58942.4806 | 50.54440 | 0.6321 |
V432 Dra | 12.23 | 0.60 | 0.16 | F5V+F5V | 53278.3192 | 11.6281562 | 0.6985 |
UW Hya | 13.19 | 0.53 | 0.0 | F8V+F8V | 47952.2502 | 2.11087916 | 0.5 |
IL Lac | 12.47 | 0.26 | 0.35 | B8V+B9V | 55482.3025 | 7.395662 | 0.4354 |
V340 Lac | 11.91 | 0.32 | 0.38 | B9.5V+B9.5V | 58350.5181 | 19.943091 | 0.7623 |
RU Mon | 10.50 | 0.078 | 0.19 | B8V+B9V | 58921.1627 | 3.584690 | 0.3348 |
V501 Mon | 12.31 | 0.501 | 0.22 | A9V+F2V | 52502.9358 | 7.0212043 | 0.4476 |
V521 Mon | 10.055 | 0.135 | 0.249 | B8V+B8V | 59518.5547 | 2.970692 | 0.592 |
V2778 Ori | 10.12 | 0.31 | 0.40 | B6V+B9V | 51629.65705 | 14.38759 | 0.4365 |
V751 Per | 11.15 | 0.19 | 0.28 | B8+B9 | 51508.6200 | 5.96134777 | 0.4487 |
V966 Per | 13.08 | 0.06 | 0.24 | B4V | 54158.3045 | 4.3088431 | 0.3319 |
CR Sct | 10.96 | 0.21 | 0.37 | B5V+B5V | 59365.5286 | 4.19235295 | 0.5112 |
V370 Sge | 12.46 | 0.57 | 0.247 | F0V+F2V | 52734.9374 | 8.32628726 | 0.3790 |
EQ Vul | 11.03 | 0.65 | 0.79 | B6+B5III | 60112.3244 | 9.297071 | 0.3214 |
V491 Vul | 9.95 | 0.74 | 1.09 | B0.5V | 54648.4446 | 7.6697718 | 0.3348 |
Star | |||||||
/year | /year | ||||||
V871 Aql | 0.156(4) | 236.90(2) | 89.80(1) | 0.172(1) | 0.180(1) | 1.37(9) | 2.07 |
V889 Aql | 0.368(4) | 127.01(1) | 89.21(1) | 0.056(3) | 0.052(3) | 0.014(1) | 0.016(2) |
V645 Aur | 0.5733(8) | 320.04(1) | 89.71(1) | 0.0612(1) | 0.0582(2) | 0.020(5) | 0.047 |
OO Cam | 0.103(3) | 260.62(1) | 87.52(1) | 0.0606(35) | 0.0716(31) | 0.008(2) | - |
V347 Cam | 0.3110(1) | 4.28(1) | 87.59(1) | 0.0728(1) | 0.0441(5) | - | - |
V361 Cam | 0.128(3) | 251.23(1) | 89.49(1) | 0.1339(7) | 0.0544(3) | 0.185 | 0.052 |
V409 Cam | 0.043(2) | 32.39(7) | 84.92(1) | 0.084(9) | 0.105(6) | 0.16(6) | - |
V422 Cam | 0.035(3) | 243.86(4) | 89.57(1) | 0.0324(1) | 0.0244(1) | - | - |
V498 Cam | 0.259(9) | 67.47(2) | 87.54(1) | 0.063(5) | 0.050(7) | 0.020(3) | - |
KX Cnc | 0.4666(5) | 63.80(1) | 89.83(1) | 0.0193(5) | 0.0190(5) | 0.0056(5) | |
DR CMi | 0.562(3) | 65.85(1) | 88.32(1) | 0.0492(6) | 0.0548(5) | 0.011(7) | - |
V1066 Cas | 0.155(3) | 55.34(1) | 86.35(1) | 0.1604(7) | 0.0707(4) | 0.193(4) | - |
V1110 Cas | 0.512(20) | 54.10(4) | 87.68(1) | 0.040(14) | 0.036(17) | 0.0088 | 0.0036: |
V1141 Cas | 0.365(2) | 259.58(1) | 89.14(1) | 0.1135(3) | 0.0919(2) | 0.15(3) | 0.235 |
V1162 Cas | 0.522(2) | 142.94(1) | 89.71(1) | 0.0268(6) | 0.0263(6) | 0.00043: | 0.0028 |
V750 Cep | 0.278(2) | 109.86(1) | 89.99(4) | 0.0501(2) | 0.0306(1) | - | 0.0050 |
V850 Cep | 0.465(2) | 74.20(1) | 88.44(1) | 0.0693(7) | 0.0586(10) | 0.010(3) | - |
V880 Cep | 0.320(6) | 79.55(1) | 88.34(1) | 0.0393(6) | 0.0272(9) | - | - |
V897 Cep | 0.034(8) | 57.8(2) | 82.15(1) | 0.12(4) | 0.14(4) | - | - |
V898 Cep | 0.2670(1) | 359.02(1) | 85.15(1) | 0.140(9) | 0.149(9) | 4.6(10) | - |
V921 Cep | 0.469(2) | 258.14(1) | 89.68(1) | 0.0868(2) | 0.0699(2) | 0.030(2) | - |
V922 Cep | 0.1325(1) | 3.56(1) | 89.64(1) | 0.1000(7) | 0.0984(8) | - | - |
V944 Cep | 0.179(2) | 86.33(1) | 84.62(1) | 0.1931(4) | 0.1049(3) | 0.44(3) | 0.70 |
V1326 Cyg | 0.396(9) | 276.3(1) | 89.12(1) | 0.0403(2) | 0.0502(1) | 0.014(7) | |
V2544 Cyg | 0.0827(9) | 338.53(3) | 85.97(1) | 0.236(2) | 0.190(3) | 8.5(1) | 8.9 |
NS Dra | 0.349(9) | 305.58(2) | 88.09(1) | 0.0245(3) | 0.0674(8) | 0.009(4) | 0.0086 |
V432 Dra | 0.377(1) | 325.12(1) | 89.19(1) | 0.0389(4) | 0.0388(4) | 0.0265(10) | |
UW Hya | 0.0 | - | 87.01(1) | 0.196(3) | 0.197(2) | - | - |
IL Lac | 0.1089(8) | 158.83(2) | 89.81(1) | 0.0734(2) | 0.0668(2) | 0.047(20) | 0.032 |
V340 Lac | 0.4261(1) | 4.35(1) | 89.62(1) | 0.0333(3) | 0.0352(2) | - | |
RU Mon | 0.398(2) | 128.87(1) | 89.10(1) | 0.129(2) | 0.129(2) | 1.00(2) | 0.86(3) |
V501 Mon | 0.137(2) | 233.22(1) | 88.27(1) | 0.0854(4) | 0.0678(6) | 0.021(6) | 0.024 |
V521 Mon | 0.192(5) | 45.15(3) | 86.82(1) | 0.2075(12) | 0.1255(9) | 1.85(7) | 1.60 |
V2778 Ori | 0.164(2) | 127.28(1) | 89.24(1) | 0.0689(2) | 0.0487(2) | 0.18(3) | - |
V751 Per | 0.0809(1) | 176.77(2) | 88.72(1) | 0.0942(2) | 0.0761(4) | 0.73: | 0.05 |
V966 Per | 0.2961(6) | 206.52(1) | 89.16(1) | 0.1475(2) | 0.1223(2) | 0.68(2) | 0.575 |
CR Sct | 0.042(1) | 65.7(1) | 88.40(1) | 0.1492(9) | 0.1311(12) | 0.57(1) | 0.47(10) |
V370 Sge | 0.2189(4) | 150.32(1) | 89.02(1) | 0.0945(1) | 0.0756(1) | 0.020(2) | 0.025 |
EQ Vul | 0.2906(6) | 192.08(1) | 88.88(1) | 0.1543(6) | 0.1282(6) | 0.96(20) | - |
V491 Vul | 0.3372(9) | 220.63(1) | 89.99(1) | 0.1115(2) | 0.1018(2) | 0.340(5) | 0.31 |
Star | K | K | ||||||||
cm/s | cm/s | |||||||||
V871 Aql | 15500 | 15500 | 4.80 | 4.90 | 3.18 | 3.32 | 2.72 | 2.76 | 4.114 | 4.085 |
V889 Aql | 10500 | 10120 | 2.49 | 2.42 | 1.97 | 1.84 | 1.58 | 1.46 | 4.245 | 4.275 |
V645 Aur | 12000 | 11400 | 3.17 | 2.92 | 2.31 | 2.19 | 2.00 | 1.86 | 4.211 | 4.221 |
OO Cam | 12000 | 9530 | 2.74 | 2.39 | 1.77 | 2.10 | 1.74 | 1.51 | 4.377 | 4.173 |
V347 Cam | 7886 | 7950 | 1.97 | 1.55 | 2.08 | 1.26 | 1.18 | 0.75 | 4.095 | 4.426 |
V361 Cam | 14852 | 11099 | 5.66 | 2.69 | 4.81 | 1.95 | 3.00 | 1.75 | 3.826 | 4.286 |
V409 Cam | 7216 | 7399 | 1.74 | 2.00 | 1.94 | 2.43 | 0.96 | 1.20 | 4.104 | 3.967 |
V422 Cam | 6453 | 5983 | 1.23 | 0.99 | 1.21 | 0.92 | 0.36 | -0.017 | 4.359 | 4.510 |
V498 Cam | 6198 | 6117 | 1.51 | 1.32 | 1.97 | 1.56 | 0.71 | 0.49 | 4.025 | 4.172 |
KX Cnc | 6048 | 5994 | 1.138 | 1.131 | 1.057 | 1.043 | 0.127 | 0.099 | 4.446 | 4.455 |
DR CMi | 8200 | 8200 | 2.44 | 2.57 | 2.93 | 3.26 | 1.55 | 1.64 | 3.892 | 3.822 |
V1066 Cas | 9600 | 10000 | 3.80 | 2.64 | 5.21 | 2.29 | 2.32 | 1.68 | 3.584 | 4.137 |
V1110 Cas | 6820 | 6725 | 1.74 | 1.63 | 2.16 | 1.95 | 0.96 | 0.84 | 4.009 | 4.070 |
V1141 Cas | 21300 | 19000 | 7.59 | 6.39 | 4.21 | 3.39 | 3.51 | 3.22 | 4.069 | 4.184 |
V1162 Cas | 9530 | 9140 | 2.17 | 2.06 | 1.72 | 1.69 | 1.34 | 1.25 | 4.301 | 4.295 |
V750 Cep | 11240 | 8580 | 3.11 | 1.86 | 2.55 | 1.56 | 1.97 | 1.07 | 4.117 | 4.321 |
V850 Cep | 8625 | 8454 | 2.45 | 2.21 | 2.68 | 2.27 | 1.55 | 1.37 | 3.971 | 4.071 |
V880 Cep | 10200 | 9261 | 2.83 | 2.14 | 2.56 | 1.77 | 1.80 | 1.32 | 4.074 | 4.271 |
V897 Cep | 5751 | 5819 | 1.41 | 1.50 | 2.01 | 2.22 | 0.60 | 0.71 | 3.981 | 3.921 |
V898 Cep | 11376 | 11678 | 2.90 | 3.07 | 2.16 | 2.29 | 1.84 | 1.94 | 4.232 | 4.203 |
V921 Cep | 7300 | 7650 | 2.36 | 2.22 | 3.47 | 2.80 | 1.49 | 1.38 | 3.730 | 3.890 |
V922 Cep | 13197 | 13437 | 3.08 | 3.11 | 1.80 | 1.77 | 1.95 | 1.96 | 4.413 | 4.432 |
V944 Cep | 12370 | 10200 | 5.16 | 3.13 | 5.76 | 3.13 | 2.84 | 1.98 | 3.629 | 3.943 |
V1326 Cyg | 11238 | 11376 | 2.75 | 3.11 | 2.00 | 2.49 | 1.76 | 1.97 | 4.277 | 4.139 |
V2544 Cyg | 21800 | 20500 | 7.5 | 6.3 | 3.90 | 3.13 | 3.49 | 3.19 | 4.130 | 4.247 |
NS Dra | 5620 | 4767 | 1.42 | 2.00 | 2.12 | 5.83 | 0.61 | 1.20 | 3.935 | 3.206 |
V432 Dra | 6587 | 6518 | 1.21 | 1.20 | 1.12 | 1.12 | 0.33 | 0.31 | 4.418 | 4.414 |
UW Hya | 6158 | 6117 | 1.49 | 1.48 | 1.95 | 1.96 | 0.69 | 0.68 | 4.029 | 4.025 |
IL Lac | 12008 | 11099 | 3.01 | 2.66 | 2.09 | 1.90 | 1.91 | 1.69 | 4.276 | 4.303 |
V340 Lac | 10195 | 10011 | 2.32 | 2.34 | 1.72 | 1.82 | 1.46 | 1.47 | 4.333 | 4.288 |
RU Mon | 12080 | 11736 | 3.21 | 3.07 | 2.35 | 2.35 | 2.02 | 1.95 | 4.202 | 4.183 |
V501 Mon | 7319 | 6867 | 1.655 | 1.465 | 1.92 | 1.53 | 0.98 | 0.67 | 4.088 | 4.236 |
V521 Mon | 14384 | 13867 | 4.77 | 3.58 | 3.65 | 2.21 | 2.71 | 2.21 | 3.992 | 4.303 |
V2778 Ori | 12000 | 10000 | 3.71 | 2.60 | 3.17 | 2.24 | 2.27 | 1.65 | 4.006 | 4.152 |
V751 Per | 11750 | 10500 | 3.10 | 2.49 | 2.31 | 1.87 | 1.96 | 1.58 | 4.201 | 4.292 |
V966 Per | 15240 | 15240 | 4.86 | 3.43 | 3.32 | 2.74 | 2.74 | 2.58 | 4.082 | 4.096 |
CR Sct | 16218 | 16218 | 5.30 | 4.97 | 3.54 | 3.12 | 2.89 | 2.78 | 4.063 | 4.147 |
V370 Sge | 6964 | 7113 | 1.91 | 1.75 | 2.51 | 2.01 | 1.13 | 0.97 | 3.918 | 4.073 |
EQ Vul | 14093 | 15488 | 6.34 | 6.35 | 6.69 | 5.56 | 3.20 | 3.20 | 3.588 | 3.750 |
V491 Vul | 35900 | 34300 | 14.7 | 13.4 | 5.55 | 5.06 | 4.66 | 4.50 | 4.118 | 4.157 |
The algorithm of light curve solution used to obtain parameters in Table 2 is described in Khaliullin and Khaliullina (1984). In Volkov (2023), an algorithm of taking into account pulsations of components was added to the program. Parameters' errors are given in parentheses. The last two columns of Table 2 present the apsidal rotation velocities obtained from observations and their theoretical values. Theoretical values are given only for those stars for which we consider the observed values to be reliable. It can be seen that, for some systems, there is a significant discrepancy between the theoretical and observed values. A possible explanation for this fact is lacking synchronism between the rotational and orbital moments. At this time, we do not have spectroscopic data on the axial rotation of the stars. Theoretical calculations are made under the assumption of synchronism at the periastron.
We obtained the absolute masses and radii of the components using the indirect method proposed by D.Ya. Martynov and described in Khaliullin (1985), Volkov et al. (2017). The results are presented in Table 3.
Fig. 1. Dependence of mass on temperature according to the data from Table 3. Blue circles are the primary components, the red ones are secondary components. Green curve is the zero age main sequence, ZAMS. |
Fig. 2. Dependence of luminosity on temperature (Hertzsprung-Russell diagram) according to Table 3. Blue circles are the primary components, red circles are the secondary ones. Green curve is the zero age main sequence, ZAMS. |
We plotted the obtained data from Table 3 in the diagrams presented in Figs. 1, 2. They are similar to such diagrams constructed for other objects by other authors and to theoretical ones. We can conclude that the indirect method works satisfactorily, the obtained sizes and masses are close to real ones, and our data are suitable for use in studying the structure and evolution of stars.
The obtained rates of apsidal rotation, both theoretical and observed, cannot yet be considered final. In some systems, the eccentricity turned out to be insignificant and therefore determined with a large error. This significantly degrades the accuracy of the calculated value. In other systems, the longitude of periastron is close to or , which makes determining the observed value extremely difficult. V751 Per is a prime example of this case. Its periastron longitude is = 177, and small errors in determining the periods led to a clearly erroneous overestimation of the rate of apsidal rotation, see Table 2.
However, for some stars both values were determined with good accuracy. For V889 Aql, V2544 Cyg, V501 Mon, V521 Mon, V966 Per, CR Sct, V370 Sge, V491 Vul, the observations do not contradict theory.
For V645 Aur and V944 Cep, apsidal rotation is slowed down and the reason may be lacking synchronism between rotational and orbital moments, just as we discovered earlier in the systems EQ Boo (Volkov et al., 2011) and V490 Sct (Volkov and Kravtsova, 2022). In V1103 Cas (Volkov and Kravtsova, 2022), the lack of synchronism accelerates the apsidal motion.
We pay special attention to the fact that the rate of apsidal rotation for CR Sct given in Wolf et al. (2004), = 0.082(8)/year, is 7 times lower than ours and is definitely wrong. The error is probably due to the use of photographic observations, which are not accurate enough. In addition, the orbital eccentricity turned out to be two times lower than Wolf et al. suggest, which leads to an underestimate of the apsidal rotation rate by them.
The original observations in the band on which this work is based are presented in the form of an electronic appendix to the html version of this paper, which contains headings with the name of the star and two columns: the heliocentric Julian date and the brightness of the star normalized to a constant level between minima. To get the real magnitude of the star, one should add this value to the constant level between minima which is given in the second column of Table 1.
Original observations of some stars whose studies have already been published are added to this Table: BW Aqr (Volkov and Chochol, 2014), V1176 Cas (Bagaev et al., 2018), V798 Cep (Volkov et al., 2017), V541 Cyg (Volkov and Khaliullin, 1999), V2647 Cyg (Kravtsova et al., 2019), DI Her (Volkov, 2005), V577 Oph (Volkov and Volkova, 2010).
Currently, we continue observations of the objects, and the data presented in the Tables 1, 2, 3 may be refined over time.
Acknowledgements
This study has made use of the SIMBAD database of the Strasbourg Astronomical Data Center (France).
I express my sincere gratitude to A.S. Volkova for her help in processing the data and for valuable discussion.
References:
Bagaev, L. A., Volkov, I. M., & Nikolenko, I. V. 2018, Astron. Rep., 62, 664
Barabanov, S. I., Potanin, S. A., Savvin, A. D., Volkov, I. M., Kravtsova, A. S., & Nikolenko, I. V. 2021, INASAN Science Reports, 6, 92
Burlak, M. A., Volkov, I. M., & Ikonnikova N. P. 2018, Contributions of the Astronomical Observatory Skalnate Pleso, 48, 536
Flower, P. J. 1996, Astrophys. J., 469, 355
Green, G. M., Schlafly, E. F., Finkbeiner, D. P., Rix, H. -W., et al. 2015, Astrophys. J., 810, 25
Khaliullin, Kh. F. 1985, Astrophys. J., 299, 668
Khaliullina, A. I. & Khaliullin, Kh. F. 1984, Sov. Astron., 28, 228
Kornilov, V. G, Volkov, I. M., Zakharov, A. I., Kozyreva, V. S., Kornilova, L. N. et al. 1991, Tr. Gos. Astron. Inst. Sternb., 63, 4
Kravtsova, A. S., Volkov, I. M., & Chochol, D., 2019, Astron. Rep., 63, 495
Moffett, T. J. & Barnes, T. G. III 1979, Astron. J., 84, 627
Otero, S. A., Wils, P., Hoogeveen, G., & Dubovsky, P. A. 2006, Inform. Bull. Var. Stars, No. 5681
Popper, D. M. 1980, Ann. Rev. Astron. & Astrophys., 18, 115
Volkov, I. M. 2005, ASP Conference Series, 335, 351
Volkov, I. M. 2023, Astron. Rep., 67, 320
Volkov, I. M. & Chochol, D. 2014, Contributions of the Astronomical Observatory Skalnate Pleso, 43, 419
Volkov, I. M., Chochol, D., & Kravtsova, A. S. 2017, Astron. Rep., 61, 440
Volkov, I. M., Chochol, D., Grygar, J., Mašek, M., & Juryšek, J. 2017, Contributions of the Astronomical Observatory Skalnate Pleso, 47, 29
Volkov, I. M. & Khaliullin, Kh. F. 1999, Inform. Bull. Var. Stars, No. 4680
Volkov, I. M. & Kravtsova, A. S. 2022, Astron. J., 164, 194
Volkov, I. M. & Kravtsova, A. S. 2022, Astron. Rep., 99, 470
Volkov, I. M., Kravtsova, A. S., & Chochol, D. 2021, Astron. Rep., 65, 184
Volkov, I. M. & Volkova, N. S. 2007, Astron. Astrophys. Trans., 26, No. 1, 129
Volkov, I. M. & Volkova, N. S. 2009, Astron. Rep., 53, 136
Volkov, I. M. 2010, ASP Conference Series, 435, 323
Volkov, I. M., Volkova, N. S., & Chochol, D., 2010, Astron. Rep., 54, 418
Volkov, I. M., Volkova, N. S., Nikolenko, I. V., & Chochol, D. 2011, Astron. Rep., 55, 824
Wolf, M., Harmanec, P., Šarounová, L., Zejda, M., Bozyc, H., Hornoch, K., Kozyreva, V. S., Hynek, T., & Král, L. 2004, Astron. & Astrophys., 420, 619